摘要
尾矿库事故造成的危害位列世界93种事故、公害隐患中的18位,与矿山的生产安全、周边社区的和谐稳定关系密切。首先针对尾矿库溃坝影响因素辨识进行综述,事故树分析法是主要研究方法之一,但该方法受人为主观意识影响较大;其次从对溃坝事故进行数值模拟、物理模型试验两个角度来看,坝体稳定性、溃坝机理、溃坝后泥石流参数是主要模拟方向,但针对溃坝机理进行的物理模型试验模拟较少,且现行主要模拟对象是洪水漫顶导致的溃坝模拟,缺乏对其他溃坝模式的试验分析。由于尾矿库溃坝事故一旦发生,灾害无法预估,着眼尾矿库溃坝从影响因素到事故再到灾害的演化过程,仍需从风险管理、计算机模拟、模型试验等领域进行交叉研究,为提高尾矿库安全管理水平提供参考。
The hazards caused by tailings pond accidents rank 18 out of 93 kinds of accidents and dangers of public hazards in the world,which are closely related to the production safety of mines and the harmony and stability of surrounding communities.Firstly,the influencing factors identification of dam break of tailings pond are summarized.Fault tree analysis is one of the main research methods,but its result is greatly influenced by subjective consciousness.Secondly,from two aspects of numerical simulation and physical model test on the dam break of tailings pond,dam stability,dam break mechanism and debris flow parameters are the main simulation directions,but there are few physical model tests for dam break mechanism,and the current simulation object is dam-break simulation caused by flood overtopping,lacking of experimental analysis of other dam-break models.Once the dam break accident occurs,the disaster cannot be predicted.In view of the evolution process of dam break of tailings pond from influencing factors,accidents and disasters,cross-over study from risk management,computer simulation,model test and other fields is still needed.The study provides a reference for improving the safety management of tailings pond.
作者
陈聪聪
赵怡晴
姜琳婧
CHEN Congcong;ZHAO Yiqing;JIANG Linjing(Civil and Resource Engineering School,University of Science and Technology Beijing,Beijing 100083,China;Key Laboratory of Ministry of Education of China for High Efficient Mining andSafety of Metal Mines,Beijing 100083,China)
出处
《矿业研究与开发》
CAS
北大核心
2019年第6期103-108,共6页
Mining Research and Development
基金
国家自然科学基金资助项目(51804018)
“十三五”国家重点研发计划项目(2017YFC0804605)
关键词
溃坝
影响因素
数值模拟
模型试验
泥砂流
Dam break
Influencing factor
Numerical simulation
Model test
Debris flow