期刊文献+

基于改进滤波及峭度原则EEMD的转子故障特征识别方法 被引量:1

Identification Method of Rotor Fault Feature Diagnosis Based on Improved Filtering and EEMD Using Kurtosis Principle
下载PDF
导出
摘要 针对转子运转时的振动冲击和噪声较大从而容易掩盖振动信号中的故障特征的问题,提出了一种基于小波阈值去噪的EEMD故障特征识别方法。采用改进后小波阈值滤波方法对振动信号进行降噪预处理,对处理结果进行集合经验模态分解(EEMD),再依据峭度原则筛选分解得到的本征模态函数(IMF)。分析重构信号的频谱特征以识别故障。结果表明,该方法有效提高了信噪比且能提取到转子故障特征。 An ensemble empirical mode decomposition(EEMD)fault feature identification method based on wavelet threshold denoising has been proposed aiming at the problems of vibration impact and noise when the rotor is running,which is easy to mask the fault features in the vibration signal.The wavelet threshold denoising method was used to preprocess the vibration signal,and then the intrinsic modal function(IMF)obtained after the set of EEMD was selected according to the Kurtosis principle.The fault characteristics of the time-frequency analysis of the obtained results were analyzed.The results show that this method can effectively suppress the noise and extract the characteristics of rotor fault.
作者 吕世鹏 袁亮 冉祥锋 LV Shipeng;YUAN Liang;RAN Xiangfeng(School of Mechanical Engineering,Xinjiang University,Urumqi Xinjiang 830047,China)
出处 《机床与液压》 北大核心 2019年第13期192-195,228,共5页 Machine Tool & Hydraulics
基金 国家自然科学基金资助项目(61662075) 新疆自治区科技支疆项目(2017E0284) 乌鲁木齐科技人才计划(P151010006)
关键词 小波阈值去噪 EEMD 峭度 故障诊断 转子 Wavelet threshold denoising EEMD Kurtosis Fault diagnosis Rotor
  • 相关文献

参考文献9

二级参考文献71

共引文献592

同被引文献14

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部