期刊文献+

快速尺度支持相关滤波跟踪

Fast scale support correlation filter tracking
下载PDF
导出
摘要 针对传统相关滤波跟踪算法在遮挡、出视野、形变、背景杂乱等挑战场景中容易出现跟踪失败的问题,本文提出快速尺度支持相关滤波跟踪算法。首先,利用循环样本构造支持相关滤波器,并将跟踪问题视为支持相关滤波器的学习问题;然后,利用离散傅里叶变换与迭代优化策略解决了支持相关滤波器的学习问题,极大地降低了算法复杂度;同时,利用对数极坐标变换将目标尺度估计问题转换为对数极坐标下的位移变化,实现了目标尺度的自适应;最后,采用自适应模板更新策略,解决了遮挡情况的模板漂移问题。利用标准数据集测试对本文算法性能进行评估,结果表明:所提算法精确度为0.964,成功率为0.892,均优于传统的相关滤波跟踪算法,可以较好地解决形变、遮挡、出视野、背景杂乱等情况下的目标跟踪问题。 The traditional correlation filter tracking algorithm is easy to track failure in the occlusion, out of view, deformation, background clutter, etc . Aiming at this problem, a fast-scale support correlation filter tracking algorithm was proposed in this paper. Firstly, the support correlation filter was constructed by loop sample, and the tracking problem was considered as a learning problem of the support correlation filter. Then, the discrete Fourier transform and the iterative optimization strategy were used to solve the learning problem of the support correlation filter, it greatly reduced the complexity of the algorithm. At the same time, the problem of scale estimation was transformed into displacement variation in polar coordinates by log polar transformation, and the adaptive scale of target was realized. Finally, an adaptive template updating strategy was adopted to solve the template drift problem in occlusion. The performance of the proposed algorithm was evaluated by using standard database. The results show that the accuracy of the proposed algorithm is 0.964 and the success rate is 0.892, which are superior to the traditional correlation filtering tracking algorithm. It can better solve the problem of target tracking under the conditions of deformation, occlusion, out of view, and background clutter.
作者 张博 江沸菠 刘刚 刘红平 ZHANG Bo;JIANG Fei-bo;LIU Gang;LIU Hong-ping(College of Information Science and Engineering, Changsha Normal University, Changsha 410100, China;College of Information Science and Engineering, Hunan Normal University, Changsha 410081, China;Physical Science and Electronics, Central South University, Changsha 410083, China)
出处 《液晶与显示》 CAS CSCD 北大核心 2019年第6期582-591,共10页 Chinese Journal of Liquid Crystals and Displays
基金 国家自然科学基金青年科学基金项目(No.41604117) 湖南省自然科学基金项目(No.2017JJ2279)~~
关键词 目标跟踪 支持相关滤波 对数极坐标变换 尺度自适应 target tracking support correlation filter log polar transformation scale adaptation
  • 相关文献

参考文献2

二级参考文献25

  • 1YILMAZ A, JAVED O, SHAH M. Object tracking: a survey [J]. ACM Computing Surveys, 2006, 38(4) : 13. 被引量:1
  • 2BABENKO B, YANG M H, BELONGIE S. Visual tracking with online multiple instance learning [C]//Proceed- ings of IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL: IEEE, 2009: 983-990. 被引量:1
  • 3KALAL Z, MATAS J, MIKOLAJCZYK K. Online learning of robust object detectors during unstable tracking [C]//Proceedings of the IEEE 12th International Conference on Computer Vision Workshops, Kyoto: IEEE, 2009 : 1417-1424. 被引量:1
  • 4KALAL Z, MIKOLAJCZYK K, MATAS J. Tracking-learning-detection [J].IEEE Transactions on Pattern A- nalysis and Machine Intelligence, 2012, 34(7): 1409-1422. 被引量:1
  • 5KALAL Z, MIKOLAJCZYK K, MATAS J. Forward-backward error: automatic detection of tracking failures [C]//Proceedings of the 20th International Conference on Pattern Recognition, Istanbul.. IEEE, 2010: 2756-2759. 被引量:1
  • 6KALAL Z, MATAS J, MIKOLAJCZYK K. P-N learning: bootstrapping binary classifiers by structural con- straints [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA.. IEEE, 2010: 49-56. 被引量:1
  • 7谢凤英,赵丹培.VisualC++数字图象处理[M].北京:电子工业出版社,2008:9. 被引量:1
  • 8赵其杰,屠大维,高健,黄志华.基于Kalman滤波的视觉预测目标跟踪及其应用[J].光学精密工程,2008,16(5):937-942. 被引量:26
  • 9杜超,刘伟宁,刘恋.一种基于卡尔曼滤波及粒子滤波的目标跟踪算法[J].液晶与显示,2011,26(3):384-389. 被引量:15
  • 10郝志成,高文.多模跟踪技术在轮式侦察车图像处理器的应用[J].中国光学,2011,4(5):480-488. 被引量:7

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部