期刊文献+

结合角点特征的CamShift目标跟踪算法研究 被引量:4

Research on CamShift Target Tracking Algorithms Combining Corner Feature
下载PDF
导出
摘要 摘要:在传统的CamShift目标跟踪算法中,仅仅依赖目标的颜色特征,而缺乏目标本身的一些特征,例如,角点,尺度和方向等信息,这将导致跟踪中容易出现中心偏移和无法抵挡目标受干扰等问题。为了能够实时有效地跟踪目标,本文提出一种结合角点特征的CamShift目标跟踪算法。该算法融合了角点的特征不变性,采用基于灰度图像的Harris角点检测算法,在图像的目标区域和候选区域提取包括图像信息的局部特征点,在视频图像相邻帧之间,通过特征点匹配,剔除虚假特征点,得到真实特征点的位置和主方向,用于引导和调整CamShift算法中搜索区域的位置和方向。测试结果表明,与传统的CamShift算法相比,该算法具有更好的跟踪效果和鲁棒性。 In the traditional CamShift target tracking algorithm, it only relies on the color features of the target, but lacks some features of the target itself, such as information of corner point, scale and direction, which will lead to problems such as center deviation and inability to resist target interference. In order to track the target effectively in real time, this paper proposes a CamShift target tracking algorithm based on corner feature. This algorithm combined with the characteristics of the invariance of the corner, and Harris corner detection algorithm based on gray image is used, the image of the target area and candidate region extraction including the local characteristics of image information points, between adjacent frames in video image, through the feature point matching, eliminate the false feature points, get the true position of feature points and the main direction, used to guide and adjust the position and direction of the search area in CamShift algorithm. The test results show that this algorithm has better tracking effect and robustness than the traditional CamShift algorithm.
作者 刘美枝 杨磊 高海 LIU Mei-zhi;YANG Lei;GAO Hai(School of Physics and Electronic Science, Shanxi Datong University, Datong Shanxi, 037009)
出处 《山西大同大学学报(自然科学版)》 2019年第5期14-18,共5页 Journal of Shanxi Datong University(Natural Science Edition)
基金 山西大同大学青年科学研究项目[2018Q1]
关键词 目标跟踪 CAMSHIFT 角点特征 target tracking CamShift corner point feature
  • 相关文献

参考文献11

二级参考文献58

  • 1刘松涛,沈同圣,周晓东,韩艳丽.舰船红外成像目标实时识别与跟踪系统研究[J].系统工程与电子技术,2005,27(8):1405-1408. 被引量:14
  • 2侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:254
  • 3Deilamani M J, Asli R N. Moving object tracking based on Mean-Shift algorithm and feature fusion [C] //Proc. of the International Conference on Artificial Intelligence and Signal Processing, 2011: 48 - 53. 被引量:1
  • 4Du M T, Jie Y L. Mean-Shift based defect detection in multicrystalline solar wafer surfaces[J]. IEEE Trans. on Industrial In f ormatics , 2011,7(1) :125 - 135. 被引量:1
  • 5Cheng Y. Mean Shift, mode seeking and clustering [J].IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995,17(8) :160 - 172. 被引量:1
  • 6Li P H. An adaptive binning color model for Mean-Shift tracking[J].IEEE Trans. on Circuits and Systems for Video Technology ,2008, 18(9):1293 - 1299. 被引量:1
  • 7Jia X H, Shao Z L, Chang L Z. Extension of Mean-Shift vector with theoretical analysis and experiment[C]//Proc, of the 3rd International Conference on Intelligent System and Knowledge Engineering, 2008 : 1007 - 1012. 被引量:1
  • 8Wu Y, Wu B, Liu J, et al. Probabilistic tracking on riemannian manifolds[C]//Proc, of the 19th International Conference on Pattern Recognition, 2008 ; 1 - 4. 被引量:1
  • 9Tian G, Hu R M, Wang Z Y. Object tracking algorithm based on Mean-Shift algorithm combining with motion vector analysis[C]// Proc. of the 1st International Conference on Education Technology and Computer Science, 2009 : 987 - 990. 被引量:1
  • 10Khan Z H, Gu I Y, Backhouse A G. Robust visual object tracking using multi-mode anisotropic Mean-Shift and particle filters [J]. IEEE Trans. on Circuits and Systems for Video Technology ,2011, 21(1) :74 - 87. 被引量:1

共引文献85

同被引文献36

引证文献4

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部