期刊文献+

基于复化Simpson公式优化背景值的GM(1,1)模型及应用

Application of GM(1,1) model based on complex Simpson formula optimization background value
下载PDF
导出
摘要 文中针对传统GM(1,1)模型背景值求解存在误差,模型预测精度低的问题,通过分析误差来源,根据已有复化Simpson公式优化背景值的方法,利用积分函数分区间积分求解逼近的思想,构建动态序列预测模型,并结合实例分析进一步验证了该方法的有效性,能够减弱背景值影响误差,提高模型的拟合预测精度,对工程实际应用具有适用性。 Aiming at the problem that the traditional GM( 1,1) model had errors in solving the background value and low prediction precision,in this paper,the error sources were analyzed,dynamic sequence prediction model was constructed according to the method of optimizing background value by complex Simpson formula by using the idea of integral function interzonal integration to solve approximation,and the effectiveness of the method was further verified by an example analysis. The influence error of background value could be reduced and the fitting and prediction accuracy of the model was improved,which was applicable to the practical engineering applications.
作者 成枢 周龙飞 朱健 Cheng Shu;Zhou Longfei;Zhu Jian(College of Geomatics,Shandong University of Science and Technology,Qingdao 266590,China)
出处 《矿山测量》 2019年第3期110-113,共4页 Mine Surveying
关键词 误差 复化Simpson公式 背景值优化 GM(1 1)模型 error compound Simpson formula background value optimization GM(1,1) model
  • 相关文献

参考文献9

二级参考文献72

共引文献122

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部