期刊文献+

基于特征地图维护的视觉里程计改进 被引量:3

Improvement of visual odometry based on feature map maintenance
下载PDF
导出
摘要 针对帧到帧模型里程计中特征点的冗余、耗费计算资源的问题,提出一种自适应特征提取与匹配的视觉里程计算法。对局部地图特征区域分块,在已有特征区域分块的基础上,基于稀疏化保留冗余特征区域中的高效特征点;针对特征区域中特征匹配点不足的情形,从局部地图中补充方向性和尺度性良好的ORB(oriented FAST and rotated BRIEF)特征点,利用补充的特征点二次匹配;结合PnP(perspective-n-point)估计姿态,实现SLAM的前端视觉里程计。采用TUM(Technische Universit t München)通用数据集验证,并与其它算法在前端时间、特征点数量、轨迹绝对误差等方面对比,对比结果表明了改进算法在上述特征效果的优势。 Aiming at the feature point redundancy and the computing resources consumption in visual odometer,an adaptive feature extraction and matching method for visual odometer calculation was proposed. The local map feature area was partitioned,and the high-efficiency feature points in the redundant feature area were reserved based on the sparse information in each feature area. Considering the lack of feature matching points in feature area,ORB (oriented FAST and rotated BRIEF) feature points with good directionality and scale were supplemented from the local map and they were used for second matching. The front-end visual odometer of SLAM was realized by estimating pose with PnP (perspective-n-point). TUM (Technische Universit t München) dataset was used to verify the proposed algorithm. Compared with other algorithms in front-end time,the number of feature points and absolute error of trajectory,the results show the advantages of the improved algorithm in the above-mentioned feature effects.
作者 徐彬彬 刘鹏远 张峻宁 XU Bin-bin;LIU Peng-yuan;ZHANG Jun-ning(Missile Engineering Department,Army Engineering University,Shijiazhuang 050003,China)
出处 《计算机工程与设计》 北大核心 2019年第7期2076-2081,共6页 Computer Engineering and Design
关键词 机器视觉 视觉里程计 局部地图点 特征区域稀疏 特征区域扩张 特征匹配 machine vision visual odometry local map point feature region sparsity feature region expansion feature matching
  • 相关文献

参考文献9

二级参考文献47

  • 1NISTER D,NARODITSKY O,BERGEN J.Visual odometry [C]// CVPR 2004:Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE Press,2004:I-652-I-659. 被引量:1
  • 2ENGEL J,STURM J,CREMERS D.Semi-dense visual odometry for a monocular camera [C]// Proceedings of the 2013 IEEE International Conference on Computer Vision.Piscataway:IEEE Press,2013:1449-1456. 被引量:1
  • 3YILMAZ O,KARAKUS F.Stereo and Kinect fusion for continuous 3D reconstruction and visual odometry [C]// Proceedings of the 2013 IEEE International Conference on Electronics Computer and Computation.Piscataway:IEEE Press,2013:115-118. 被引量:1
  • 4McDONALD J,KAESS M,CADENA C.Real-time 6-DOF multi-session visual SLAM over large scale environment [J].Robotics and Autonomous Systems,2012,61(10):1144-1158. 被引量:1
  • 5KNEIP L,CHLI M,SIEGWART R.Robust real-time visual odometry with a single camera and an IMU [C]// Proceedings of the 2011 British Machine Vision Conference.Durham:BMVC Press,2011:16.1-16.11. 被引量:1
  • 6WHELAN T,JOHANNSSON H,KAESS M,et al.Robust real-time visual odometry for dense RGB-D mapping [C]// Proceedings of the 2013 IEEE International Conference on Robotics and Automation.Piscataway:IEEE Press,2013:5724-5731. 被引量:1
  • 7DRYANOVSKI I,VALENTI R G,XIAO J.Fast visual odometry and mapping from RGB-D data [C]// Proceedings of the 2013 IEEE International Conference on Robotics and Automation.Piscataway:IEEE Press,2013:2305-2310. 被引量:1
  • 8KLUSSENDORFF J H,HARTMANN J,FOROUHER D,et al.Graph-based visual SLAM and visual odometry using an RGB-D camera [C]// Proceedings of the 2013 9th Workshop on Robot Motion and Control.Piscataway:IEEE Press,2013:288-293. 被引量:1
  • 9SCARAMUZZA D,FRAUNDORFER F.Visual odometry [J].Robotics and Automation Magazine,2011,18(4):80-92. 被引量:1
  • 10SIEGWART R,NOURBAKHSH I,SCARAMUZZA D.Introduction to autonomous mobile robots [M].Cambridge:Massachusetts Institute of Technology Press,2011:265-366. 被引量:1

共引文献89

同被引文献24

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部