期刊文献+

基于ORB关键帧匹配算法的机器人SLAM实现 被引量:9

Realization of SLAM based on improved ORB keyframe detection and matching for robot
下载PDF
导出
摘要 针对复杂环境下机器人的同时定位与地图构建(SLAM)存在实时性与鲁棒性下降等问题,将一种基于ORB特征点的关键帧闭环检测匹配算法应用到定位与地图构建中。研究并分析了特征点提取与描述符建立、帧间配准、位姿变换估计以及闭环检测对SLAM系统的影响,建立了关键帧闭环匹配算法和SLAM实时性与鲁棒性之间的关系,提出了一种基于ORB关键帧匹配算法的SLAM方法。运用改进ORB算法加快了图像特征点提取与描述符建立速度;结合相机模型与深度信息,可将二维特征图像转换为三维彩色点云;通过随机采样一致性(RANSAC)与最近迭代点(ICP)相结合的改进RANSAC-ICP算法,实现了机器人在初始配准不确定条件下的位姿估计;使用Key Frame的词袋闭环检测算法,减少了地图的冗余结构,生成了具有一致性的地图;通过特征点匹配速度与绝对轨迹误差的均方根值对SLAM系统的实时性与鲁棒性进行了评价。基于标准测试集数据集的实验结果表明,ORB关键帧匹配算法能够有效提高SLAM系统建图速度与稳定性。 Aiming at the problems of the decline in real-time and robust performance of robot simultaneous localization and mapping(SLAM) in a complex environment, an optimization frame of SLAM based on improved ORB(oriented FAST and rotated BRIEF) keyframe detection and matching algorithm was proposed. After the analysis of keypoint detection, frame matching, motion estimation and loop-closure detection algorithm, the relationship between keyframe loop-closure matching algorithm and SLAM system was established. An improved ORB algo- rithm was adopted to implement the fast and efficient matching between two adjacent RGB frames. Combined camera perspective projection model with dense frames, the 3D color point clouds can be transformed from adjacent matched 2D frames. Then the relative pose between the adjacent frames was computed by improved RANSAC-ICP algorithm, which can solve the mobile robot precise localization problem. The key- frame Bag-of-Word algorithm was the basis of loop-closure detection, which can improve the mapping speed and consistency. The purpose of closure detection was to reduce redundant model structure and generate a map with consistency. The real-time and robust performance were e- valuated by matching speed and root-mean-square (RMSE) of the absolute trajectory error (ATE). The Results base on standard testing in- dicate that the robot can build a precise environment model where the robot can localize itself real-time and robustly.
出处 《机电工程》 CAS 2016年第5期513-520,共8页 Journal of Mechanical & Electrical Engineering
基金 国家自然科学基金资助项目(51275470) 浙江省高等学校中青年学科带头人学术攀登项目(pd2013019) 浙江省重点科技创新团队自主设计项目(2011R50011-8)
关键词 同时定位与地图构建 特征点提取与匹配 关键帧提取 闭环检测 simultaneous localization and mapping(SLAM) keypoint detection keyframe selection closure detection
  • 相关文献

参考文献15

  • 1梁明杰,闵华清,罗荣华.基于图优化的同时定位与地图创建综述[J].机器人,2013,35(4):500-512. 被引量:101
  • 2KLEIN G, MURRAY D.Parallel tracking and mapping for small AR workspace[C]//2007 6th IEEE and ACM Intema- tional Symposium on Mixed and Augmented Reality.Nara : Inst of Elec and Elec Eng Computer Society,2007:225-234. 被引量:1
  • 3GRISETTI G,KUMMERLE R, STACHNISS C,et al.A Tu- torial on Graph-Based SLAM[J].IEEE Transaction on Intelligent Transportation Systems Magazine,2010,2(4):3143. 被引量:1
  • 4肖雄,李旦,陈锡锻,李刚.一种基于增广EKF的移动机器人SLAM方法[J].机电工程,2014,31(1):109-113. 被引量:6
  • 5ANAND A,JOACHIMS T,SAXENA A.Semantic Labeling of 3D Point Clouds for Indoor Scenes[J].Nips,2011(24):244-252. 被引量:1
  • 6NEWCOMBE R A, IZADI S, HILLIGES O,et al.Kinect- Fusion : Real-time dense surface mapping and tracking [C]//Proceedings of the 2011 10th IEEE International Sym- posium on Mixed and Augmented Reality.Basel : IEEE Computer Society,2011;127-136. 被引量:1
  • 7IZADI S,KIM D, HILLIGES O,et al.KinectFusion; real- time 3D reconstruction and interaction using a moving depth camera[C]//Proceedings of the 24th annual ACM symposi- um on User interface software and technology.New York; ACM,2011:559-568. 被引量:1
  • 8HENRY P,KRAININ M,HERBST E,et al.RGB-D map- ping: Using Kinect-style depth cameras for dense 3D model- ing of indoor environments[J].International Journal of Robotics Research,2012,31(5):647-663. 被引量:1
  • 9BAILEY T,DURRANT-WHYTE H.Simultaneous localiza- tion and mapping (SLAM): part II[J].IEEE Robotics & Amp Amp Automation Magazine,2006,13(3):108-117. 被引量:1
  • 10RUBLEE E,RABAUD V, KONOLIGE K, et al.ORB: An efficient alternative to SIFT or SURF[J].Proceed- ings,2011,58(11):2564-2571. 被引量:1

二级参考文献113

  • 1Durrant-Whyte H, Bailey T. Simultaneous localization and mapping: Part I. The essential algorithms[J]. IEEE Robotics and Automation Magazine, 2006, 13(2): 99-108. 被引量:1
  • 2Smith R C, Cheeseman P. On the representation and estimation of spatial uncertainty[J]. International Journal of Robotics Re- search, 1986, 5(4): 56-68. 被引量:1
  • 3Thrun S, Liu Y F, Koller D, et al. Simultaneous localization and mapping with sparse extended information filters[J]. Inter- national Journal of Robotics Research, 2004, 23(7/8): 693-716. 被引量:1
  • 4Montemerlo M, Thrun S, Koller D, et al. FastSLAM: A factored solution to the simultaneous localization and mapping prob- lem[C]//Proceedings of the National Conference on Artificial Intelligence. Menlo Park, USA: AAAI, 2002: 593-598. 被引量:1
  • 5Thrun S. Robotic mapping: A survey[M]//Exploring Artificial Intelligence in the New Millennium. San Francisco, USA: Mor- gan Kaufmann, 2002: 1-35. 被引量:1
  • 6Huang S D, Dissanayake G. Convergence and consistency anal- ysis for extended Kalman filter based SLAM[J]. IEEE Transac- tions on Robotics, 2007, 23(5): 1036-1049. 被引量:1
  • 7Thrun S, Burgard W, Fox D. Probabilistic robotics[M]. Cam- bridge, USA: MIT Press, 2005. 被引量:1
  • 8Thrun S, Montemerlo M. The graph SLAM algorithm with ap- plications to large-scale mapping of urban structures[J]. Inter- national Journal of Robotics Research, 2006, 25(5/6): 403-429. 被引量:1
  • 9Frese U, Larsson P, Duckett T. A multilevel relaxation algorithm for simultaneous localization and mapping[J]. /EEE Transac- tions on Robotics, 2005, 21(2): 196-207. 被引量:1
  • 10Olson E, Leonard J, Teller S. Fast iterative alignment of pose graphs with poor initial estimates[C]/flEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2006: 2262-2269. 被引量:1

共引文献104

同被引文献41

引证文献9

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部