期刊文献+

基于非线性Logistic模型的改进UDEED算法 被引量:2

Improved UDEED Algorithm Based on Nonlinear Logistic Model
下载PDF
导出
摘要 针对UDEED算法中线性Logistic模型分类预测准确率较低的问题,基于泰勒展开式,提出一种多项式核的非线性Logistic模型改进算法。研究非线性Logistic模型的核函数参数估计方法,更新损失函数的计算规则,并利用梯度下降法求解改进UDEED模型,实现数据集的分类预测。实验结果表明,与UDEED算法相比,改进算法提高了分类预测的准确率。 To address the problem that the linear Logistic model in the UDEED algorithm has poor classification prediction accuracy,based on Taylor expansion,an improved nonlinear Logistic model algorithm for polynomial kernel is proposed.The estimation method for kernel function parameter of nonlinear Logistic model is studied,and the calculation rules of the loss function are updated.The improved UDEED model is solved by the gradient descent method,and the data set is classified and predicted.Experimental results show that compared with the UDEED algorithm,the improved algorithm improves the accuracy of classification prediction.
作者 庄立纯 张正军 张乃今 李君娣 ZHUANG Lichun;ZHANG Zhengjun;ZHANG Naijin;LI Jundi(School of Science,Nanjing University of Science and Technology,Nanjing 210094,China)
出处 《计算机工程》 CAS CSCD 北大核心 2019年第7期208-211,共4页 Computer Engineering
基金 国家自然科学基金(61773014)
关键词 UDEED算法 非线性Logistic模型 半监督学习 无标签数据 梯度下降 UDEED algorithm nonlinear Logistic model semi-supervised learning unlabeled data gradient descent
  • 相关文献

参考文献4

二级参考文献66

  • 1傅强,胡上序,赵胜颖.Clustering-based selective neural network ensemble[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2005,6(5):387-392. 被引量:2
  • 2殷志华,何育山,傅强,孔维军,崔梅红.江苏边底水油藏含水上升规律研究及应用[J].中国科技信息,2006(01A):105-105. 被引量:7
  • 3王先德.水驱油田含水率预测方法[J].内蒙古石油化工,2006,32(5):199-199. 被引量:3
  • 4Chapelle O,Scholkopf B,Zien A. Semi-Supervised Learning[M].Cambridge,ma:the Mit Press,2006. 被引量:1
  • 5Zhu X J. Semi-supervised Learning Literature Survey.Technical Report 1530[R].Department of Computer Sciences,University of Wisconsin at Madison,Madison,WI,2006. 被引量:1
  • 6Zhou Z H,Li M. Semi-supervised learning by disagreement[J].Knowledge and Information Systems,2010,(03):415-439. 被引量:1
  • 7Shahshahani B M,Landgrebe D A. The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon[J].IEEE Transactions on Geoscience and Remote Sensing,1994,(05):1087-1095. 被引量:1
  • 8Miller D,Uyar H. A mixture of experts classifier with learning based on both labelled and unlabelled data[A].Cambridge,ma:the Mit Press,1997.571-577. 被引量:1
  • 9Nigam K,McCallum A K,Thrun S,Mitchell T. Text classification from labeled and unlabeled documents using EM[J].Machine Learning,2000,(2-3):103-134. 被引量:1
  • 10Blum A,Mitchell T. Combining labeled and unlabeled data with co-training[A].New York,USA:ACM,1998.92-100. 被引量:1

共引文献119

同被引文献11

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部