期刊文献+

基于改进seq2seq模型的英汉翻译研究 被引量:19

English-Chinese translation based on an improved seq2seq model
下载PDF
导出
摘要 目前机器翻译主要对印欧语系进行优化与评测,很少有对中文进行优化的,而且机器翻译领域效果最好的基于注意力机制的神经机器翻译模型—seq2seq模型也没有考虑到不同语言间语法的变换。提出一种优化的英汉翻译模型,使用不同的文本预处理和嵌入层参数初始化方法,并改进seq2seq模型结构,在编码器和解码器之间添加一层用于语法变化的转换层。通过预处理,能缩减翻译模型的参数规模和训练时间20%,且翻译性能提高0.4BLEU。使用转换层的seq2seq模型在翻译性能上提升0.7~1.0BLEU。实验表明,在规模大小不同的语料英汉翻译任务中,该模型与现有的基于注意力机制的seq2seq主流模型相比,训练时长一致,性能提高了1~2BLEU。 Current machine translation systems optimize and evaluate the translation process in Indo-European languages to enhance translation accuracy.But researches about Chinese language are few.At present the seq2seq model is the best method in the field of machine translation,which is a neural machine translation model based on the attention mechanism.However,it does not take into account the grammar transformation between different languages.We propose a new optimized English-Chinese translation model.It uses different methods to preprocess texts and initialize embedding layer parameters.Additionally,to improve the seq2seq model structure,a transform layer between the encoder and the decoder is added to deal with grammar transformation problems.Preprocessing can reduce the parameter size and training time of the translation model by 20%,and the translation performance is increased by 0.4 BLEU.The translation performance of the seq2seq model with a transform layer is improved by 0.7 to 1.0 BLEU.Experiments show that compared to the existing seq2seq mainstream model based on the attention mechanism,the training time for English-Chinese translation tasks is the same for corpus of different sizes,but the translation performance of the proposal is improved by 1 to 2 BLEU.
作者 肖新凤 李石君 余伟 刘杰 刘倍雄 XIAO Xin-feng;LI Shi-jun;YU Wei;LIU Jie;LIU Bei-xiong(Department of Mechanical and Electrical Engineering,Guangdong Polytechnic of Environmental Protection Engineering,Foshan 528216;School of Computer Science,Wuhan University,Wuhan 430079,China)
出处 《计算机工程与科学》 CSCD 北大核心 2019年第7期1257-1265,共9页 Computer Engineering & Science
基金 国家自然科学基金(61502350) 2017广东高校省级重点平台和重大科研项目(2017GKTSCX042)
关键词 深度学习 神经机器翻译 seq2seq模型 注意力机制 命名实体识别 deep learning neural machine translation seq2seq model attention mechanism named entity recognition
  • 相关文献

参考文献1

二级参考文献28

  • 1黄昌宁,赵海.中文分词十年回顾[J].中文信息学报,2007,21(3):8-19. 被引量:249
  • 2Xue Nianwen. Chinese word segmentation as character tagging. Computational Linguistics and Chinese Language Processing, 2003, 8(1): 29-48. 被引量:1
  • 3Feng Haodi, et al. Aecessor variety criteria for Chinese word extraction. Association for Computational Linguistics, 2004, 30(1) : 75-93. 被引量:1
  • 4Feng Haodi, et al. Unsupervised segmentation of Chinese corpus using aceessor variety//Proceedings of the 1st Inter- national Joint Conference on Natural Language Processing. Hainan Island, China, 2004:255-261. 被引量:1
  • 5Huang Degen, Tong Deqin, Luo Yanyan. HMM revises low marginal probability by CRF for Chinese word segmentation //Proceedings of CIPS-SIGHAN Joint Conference on Chinese Language Processing 2010. Beijing, China, 2010:216-220. 被引量:1
  • 6Chang Baobao, Han Dongxu. Enhancing domain portability of Chinese segmentation model using chi-square statistics and bootstrapping//Proceedings of the 2010 Conference on Empirical Methods on Natural Language Processing. Massa- chusetts, USA, 2010: 789-798. 被引量:1
  • 7Shen Jianping, et al. Chinese word segmentation based on mixing multiple preprocessor and CRF//Proceedings of CIPS-SIGHAN Joint Conference on Chinese Language Processing 2010. Beijing, China, 2010:270-273. 被引量:1
  • 8Xu Xiaoming, et al. High OOV-recall Chinese word segmenter //Proceedings of CIPS-SIGHAN Joint Conference on Chinese Language Processing 2010. Beijing, China, 2010:252-255. 被引量:1
  • 9Jiang Huixing, Dong Zhe. An double hidden HMM and an CRF for segmentation tasks with Pinyin's finals//Proceedings of CIPS-SIGHAN Joint Conference on Chinese Language Processing 2010. Beijing, China, 2010:277-281. 被引量:1
  • 10Wang Kun, et al. A characte:based joint model for CIPS SIGHAN word segmentation Bakeoff 2010//Proceedings of CIPS-SIGHAN Joint Conference on Chinese Language Processing 2010. Beijing, China, 2010:245-248. 被引量:1

共引文献58

同被引文献178

引证文献19

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部