期刊文献+

基于深度学习的胎心监护对胎儿窘迫风险的识别分析 被引量:5

Identification and Analysis of the Fetal Distress Risk by Fetal Heart Rate Monitoring Based on Deep Learning
下载PDF
导出
摘要 目的:分析基于深度学习的胎心监护对胎儿窘迫风险的识别。方法:分析2017年1月至2019年12月医院产科收治的1010例孕妇。根据孕妇生产时是否发生胎儿窘迫分为窘迫组和对照组。比较多因素Logistic回归分析模型和深度神经网络模型(DNN)预测孕妇发生胎儿窘迫的预测效能。结果:纳入孕妇有153例发生胎儿窘迫,发生率为16.14%。ROC曲线结果显示多因素Logistic回归模型预测发生胎儿窘迫风险的AUC是0.881,DNN模型预测发生胎儿窘迫风险的AUC是0.974,Z检验结果显示DNN模型的预测效能高于多因素Logistic回归分析模型(P<0.05)。结论:DNN模型下胎心监护对孕妇发生胎儿窘迫有良好预测性,有助于早期识别和处理高危孕妇。 Objective:The identification of fetal distress risk by fetal heart rate monitoring based on deep learning was analyzed.Methods:A total of 1010 pregnant women admitted to our hospital from January 2017 to December 2019 were analyzed.According to whether fetal distress occurred during delivery,the pregnant women were divided into distress group and control group.To compare the predictive efficacy of multivariate Logistic regression analysis model and deep neural network model(DNN)in predicting fetal distress in pregnant women.Results:Fetal distress occurred in 153 pregnant women,with an incidence of 16.14%.ROC curve results showed that the AUC of multivariate Logistic regression model for predicting fetal distress risk was 0.881,the AUC of DNN model for predicting fetal distress risk was 0.974,Z test results showed that the prediction efficiency of DNN model was higher than that of multivariate Logistic regression analysis model(P<0.05).Conclusion:Fetal heart rate monitoring under DNN model has a good predictive ability for fetal distress,which is helpful for early identification and treatment of high-risk pregnant women.
作者 张阔 陈莹 刘丹 ZHANG Kuo;CHEN Ying;LIU Dan(Tangshan Maternal and Child Health Hospital,Tangshan 063000,Hebei Province,P.R.C.)
出处 《中国数字医学》 2021年第10期86-92,共7页 China Digital Medicine
基金 以胎儿窘迫为剖宫产指征的胎心监护图形分析(编号:20191527).
关键词 神经网络模型 胎心监护 孕妇 胎儿窘迫 neural network model fetal heart rate monitoring pregnant women fetal distress
  • 相关文献

参考文献2

  • 1谢幸,苟文丽著..“十二五”普通高等教育本科国家规划教材 妇产科学 第8版[M].北京:人民卫生出版社,2013:488.
  • 2周志华,曹存根主编..神经网络及其应用[M].北京:清华大学出版社,2004:445.

同被引文献47

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部