期刊文献+

Downhole Microseismic Source Location Based on a Multi-Dimensional DIRECT Algorithm for Unconventional Oil and Gas Reservoir Exploration 被引量:2

Downhole Microseismic Source Location Based on a Multi-Dimensional DIRECT Algorithm for Unconventional Oil and Gas Reservoir Exploration
下载PDF
导出
摘要 Downhole microseismic data has the significant advantages of high signal-to-noise ratio and well-developed P and S waves and the core component of microseismic monitoring is microseismic event location associated with hydraulic fracturing in a relatively high confidence level and accuracy.In this study,we present a multidimensional DIRECT inversion method for microseismic locations and applicability tests over modeling data based on a downhole microseismic monitoring system.Synthetic tests inidcate that the objective function of locations can be defined as a multi-dimensional matrix space by employing the global optimization DIRECT algorithm,because it can be run without the initial value and objective function derivation,and the discretely scattered objective points lead to an expeditious contraction of objective functions in each dimension.This study shows that the DIRECT algorithm can be extensively applied in real downhole microseismic monitoring data from hydraulic fracturing completions.Therefore,the methodology,based on a multidimensional DIRECT algorithm,can provide significant high accuracy and convergent efficiency as well as robust computation for interpretable spatiotemporal microseismic evolution,which is more suitable for real-time processing of a large amount of downhole microseismic monitoring data. Downhole microseismic data has the significant advantages of high signal-to-noise ratio and well-developed P and S waves and the core component of microseismic monitoring is microseismic event location associated with hydraulic fracturing in a relatively high confidence level and accuracy. In this study, we present a multidimensional DIRECT inversion method for microseismic locations and applicability tests over modeling data based on a downhole microseismic monitoring system. Synthetic tests inidcate that the objective function of locations can be defined as a multi-dimensional matrix space by employing the global optimization DIRECT algorithm, because it can be run without the initial value and objective function derivation, and the discretely scattered objective points lead to an expeditious contraction of objective functions in each dimension. This study shows that the DIRECT algorithm can be extensively applied in real downhole microseismic monitoring data from hydraulic fracturing completions. Therefore, the methodology, based on a multidimensional DIRECT algorithm, can provide significant high accuracy and convergent efficiency as well as robust computation for interpretable spatiotemporal microseismic evolution, which is more suitable for real-time processing of a large amount of downhole microseismic monitoring data.
出处 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第3期718-730,共13页 地质学报(英文版)
基金 financially supported by the National Natural Science Foundation of China (Grant No. 41807296 and No. 41802006) Natural science found for universities of Anhui province (Grant No. KJ2017A036)
关键词 UNCONVENTIONAL oil and gas RESERVOIR DOWNHOLE microseismic monitoring source LOCATION DIRECT algorithm unconventional oil and gas reservoir downhole microseismic monitoring source location DIRECT algorithm
  • 相关文献

参考文献12

二级参考文献150

共引文献130

同被引文献19

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部