期刊文献+

Global Optimization of Polynomials over Real Algebraic Sets 被引量:1

Global Optimization of Polynomials over Real Algebraic Sets
原文传递
导出
摘要 Let f, g_1, ···, g_s be polynomials in R[X_1, ···, X_n]. Based on topological properties of generalized critical values, the authors propose a method to compute the global in?mum f~? of f over an arbitrary given real algebraic set V = {x ∈ R^n| g_1(x) = 0, ···, g_s(x) = 0}, where V is not required to be compact or smooth. The authors also generalize this method to solve the problem of optimizing f over a basic closed semi-algebraic set S = {x ∈ R^n| g_1(x) ≥ 0, ···, g_s(x) ≥ 0}. Let f, g_1, · · ·, g_s be polynomials in R[X_1, · · ·, X_n]. Based on topological properties of generalized critical values, the authors propose a method to compute the global in?mum f~? of f over an arbitrary given real algebraic set V = {x ∈ R^n| g_1(x) = 0, · · ·, g_s(x) = 0}, where V is not required to be compact or smooth. The authors also generalize this method to solve the problem of optimizing f over a basic closed semi-algebraic set S = {x ∈ R^n| g_1(x) ≥ 0, · · ·, g_s(x) ≥ 0}.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2019年第1期158-184,共27页 系统科学与复杂性学报(英文版)
基金 supported by the National Key Research Project of China under Grant No.2018YFA0306702 the National Natural Science Foundation of China under Grant No.11571350
关键词 POLYNOMIAL optimization REAL ALGEBRAIC set generalized CRITICAL VALUE Polynomial optimization real algebraic set generalized critical value
  • 相关文献

参考文献3

二级参考文献41

  • 1Basu S, Pollack R, Roy M F. Algorithms in Real Algebraic Geometry, Algorithms and Computation in Math. 10. Berlin: Springer-Verlag, 2003. 被引量:1
  • 2Bochnak J, Coste M, Roy M F. Real Algebraic Geometry. New York-Berlin-Heidelberg: Springer-Verlag, 1998. 被引量:1
  • 3Guo F, Safey EI Din M, Zhi L H. Global Optimization of Polynomials Using Generalized Critical Values and Sums of Squares. In: Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation. New York: ACM, 2010, 107–114. 被引量:1
  • 4Hanzon B, Jibetean D. Global minimization of a multivariate polynomial using matrix methods. J Global Optimization, 2003, 27: 1–23. 被引量:1
  • 5Hgglf K, Lindberg P O, Stevenson L. Computing global minima to polynomial optimization problems using Grbner bases. J Global Optimization, 1995, 7: 115–125. 被引量:1
  • 6Heck A. Introduction to Maple. New York-Berlin-Heidelberg: Springer-Verlag, 1993. 被引量:1
  • 7Knebusch M. On the extension of real places. Comment Math Helv, 1973, 48: 354–369. 被引量:1
  • 8Lam T Y. The Theory of Ordered Fields, Lecture Notes in Pure and Appl. Math. 55. New York: M. Dekker, 1980. 被引量:1
  • 9Mishra B. Algorithmic Algebra, Texts and Monographs in Computer Science. New York-Berlin-Heidelberg: Springer- Verlag, 1993. 被引量:1
  • 10Nie J, Demmel J, Sturmfels B. Minimizing polynomials via sums of squares over the gradient ideal, Math Program Ser A, 2006, 106: 587–606. 被引量:1

共引文献35

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部