期刊文献+

Algorithms for computing the global infimum and minimum of a polynomial function 被引量:5

Algorithms for computing the global infimum and minimum of a polynomial function
原文传递
导出
摘要 By catching the so-called strictly critical points,this paper presents an effective algorithm for computing the global infimum of a polynomial function.For a multivariate real polynomial f ,the algorithm in this paper is able to decide whether or not the global infimum of f is finite.In the case of f having a finite infimum,the global infimum of f can be accurately coded in the Interval Representation.Another usage of our algorithm to decide whether or not the infimum of f is attained when the global infimum of f is finite.In the design of our algorithm,Wu’s well-known method plays an important role. By catching the so-called strictly critical points, this paper presents an effective algorithm for computing the global infimum of a polynomial function. For a multivariate real polynomial f, the algorithm in this paper is able to decide whether or not the global infimum of f is finite. In the case of f having a finite infimum, the global infimum of f can be accurately coded in the Interval Representation. Another usage of our algorithm to decide whether or not the infimum of f is attained when the global infimum of f is finite. In the design of our algorithm, Wu's well-known method plays an important role.
机构地区 Nanchang Univ
出处 《Science China Mathematics》 SCIE 2012年第4期881-891,共11页 中国科学:数学(英文版)
基金 partially supported by National Natural Science Foundation of China (Grant Nos. 10761006, 11161034)
关键词 polynomial optimization global infimum global minimum strictly critical point Transfer prin-ciple Wu's method rational univariate representation 计算算法 多项式函数 下确界 多元多项式 临界点 区间
  • 相关文献

参考文献17

  • 1Basu S, Pollack R, Roy M F. Algorithms in Real Algebraic Geometry, Algorithms and Computation in Math. 10. Berlin: Springer-Verlag, 2003. 被引量:1
  • 2Bochnak J, Coste M, Roy M F. Real Algebraic Geometry. New York-Berlin-Heidelberg: Springer-Verlag, 1998. 被引量:1
  • 3Guo F, Safey EI Din M, Zhi L H. Global Optimization of Polynomials Using Generalized Critical Values and Sums of Squares. In: Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation. New York: ACM, 2010, 107–114. 被引量:1
  • 4Hanzon B, Jibetean D. Global minimization of a multivariate polynomial using matrix methods. J Global Optimization, 2003, 27: 1–23. 被引量:1
  • 5Hgglf K, Lindberg P O, Stevenson L. Computing global minima to polynomial optimization problems using Grbner bases. J Global Optimization, 1995, 7: 115–125. 被引量:1
  • 6Heck A. Introduction to Maple. New York-Berlin-Heidelberg: Springer-Verlag, 1993. 被引量:1
  • 7Knebusch M. On the extension of real places. Comment Math Helv, 1973, 48: 354–369. 被引量:1
  • 8Lam T Y. The Theory of Ordered Fields, Lecture Notes in Pure and Appl. Math. 55. New York: M. Dekker, 1980. 被引量:1
  • 9Mishra B. Algorithmic Algebra, Texts and Monographs in Computer Science. New York-Berlin-Heidelberg: Springer- Verlag, 1993. 被引量:1
  • 10Nie J, Demmel J, Sturmfels B. Minimizing polynomials via sums of squares over the gradient ideal, Math Program Ser A, 2006, 106: 587–606. 被引量:1

同被引文献15

  • 1Jiawang Nie.An exact Jacobian SDP relaxation for polynomial optimization[J]. Mathematical Programming . 2013 (1) 被引量:1
  • 2D. Jibetean,E. de Klerk.Global optimization of rational functions: a semidefinite programming approach[J]. Mathematical Programming . 2006 (1) 被引量:1
  • 3Bernard Hanzon,Dorina Jibetean.Global Minimization of a Multivariate Polynomial using Matrix Methods[J]. Journal of Global Optimization . 2003 (1) 被引量:1
  • 4Jean B Lasserre.Global optimization with polynomials and the problem of moments. SIAM Journal on Optimization . 2001 被引量:1
  • 5Bhubaneswar Mishra.Algorithmic Algebra. Journal of Women s Health . 1993 被引量:1
  • 6Parrilo P A,Sturmfels B.Minimizing polynomial functions. Algorithmic and quantitative real algebraic geometry . 2003 被引量:1
  • 7Nie J.Polynomial optimization with real varieties. SIAM Journal on Optimization . 2013 被引量:1
  • 8Wang D K.Zero decomposition algorithms for systems of polynomial Equations. Computer Mathematics,Proceedings of the Fourth Asian Symposium . 2000 被引量:1
  • 9Heck A.Introduction to Maple. Journal of Women s Health . 1993 被引量:1
  • 10BASU S,POLLACK R,ROY M F.Algorithms in real algebraic geometry. Algorithms and Computation in Mathematics . 2003 被引量:1

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部