期刊文献+

基于多尺度特征稠密连接的遥感图像目标检测方法 被引量:12

Research on Remote Sensing Image Object Detection Method Based on Densely Connected Multi-scale Features
下载PDF
导出
摘要 遥感图像目标检测是指在遥感图像中快速识别并定位感兴趣的各类目标,是遥感图像解译的基础性工作。传统的目标检测方法主要基于人工设计特征或浅层学习特征,由于特征表征能力有限,检测效果并不佳。深度学习技术的蓬勃发展为遥感图像目标检测提供了一个非常有效的工具,但是由于遥感图像的特殊性,目前主流的基于深度学习的通用目标检测方法无法直接用于遥感图像目标检测中。针对这些问题,首先分析了遥感图像数据的固有特点和新的分析应用需求,然后详细介绍了基于深度学习的目标检测算法YOLO,并在此基础上对算法进行了针对性改进,提出一种基于多尺度特征稠密连接的遥感图像目标检测方法,实验结果表明,提出的方法在相关数据集上检测的平均精度相比于YOLOv3提高了1. 91个百分点,具有相对较好的检测效果。 Remote sensing image object detection refers to the rapid identification and location of various types of objects in remote sensing images,which is the basic work of remote sensing image interpretation.The traditional object detection method is mainly based on artificial design features or shallow learning features. Due to limited feature representation,the result is not good. The fast development of deep learning technology provides a very effective tool for remote sensing image object detection. However,due to the particularity of remote sensing images,the current generic object detection method based on deep learning cannot be directly used in remote sensing image object detection. This paper first analyzes the inherent characteristics of remote sensing image data and the new analytical application requirements,then introduces an object detection algorithm based on deep learning YOLO in detail,and then,an object detection method based on densely connected multi-scale features is proposed. The experimental show that the method proposed in this paper improves the Average-Precision of the detection result on the relevant dataset by about 3-4 percentage compared with YOLOv3.
作者 张裕 杨海涛 刘翔宇 ZHANG Yu;YANG Hai-tao;LIU Xiang-yu(Space Engineering University, Beijing 101407 ,China)
机构地区 航天工程大学
出处 《中国电子科学研究院学报》 北大核心 2019年第5期530-536,共7页 Journal of China Academy of Electronics and Information Technology
基金 军队科研xx项目
关键词 目标检测 深度学习 遥感图像 Object detection Deep learning Remote sensing image
  • 相关文献

参考文献1

二级参考文献11

  • 1[1]S.Adar,S.Buganim and S.R.Rotman.Analyzing point target detection algorithms[J].Electro-Optical and Infrared Systems:Technology and Applications Ⅱ,SPIE,2005,59870T(2):124-129 被引量:1
  • 2[2]Wei Zhang,Mingyu Cong.Algorithms for optical weak small targets detection and tracking:review[J].Proceedings of the 2003 International Conference on Neural Networks and Signal Processing,2003,1(1):643-647 被引量:1
  • 3[3]Uday B.Desai,Shabbir N.Small Object Detection and Tracking:Algorithm,Analysis and Application.PReMI,2005,3776(2):108-117 被引量:1
  • 4[5]L.Yang,J.Yang.Adaptive detection for infrared small target under sea-sky complex background[J].Electronics Letters,2004,40(17):1083-1085 被引量:1
  • 5[7]Roger A.Samy,Jean-Francois Bonnet.Robust estimation of texture parameters for small-target detection in clutter.Targets and Backgrounds:Characterization and Representation Ⅲ[J],Proceedings of SPIE,1997,3062:2-9 被引量:1
  • 6[9]Piet Schwering.infrared cloud background clutter[J].Proceedings of SPIE,1992,1687(1):311-322 被引量:1
  • 7[11]Alexis P.Tzannes.Detection of point targets in image sequences by hypothesis testing:a temporal test first approach[J].IEEE International Conference on Acoustics,Speech,and Signal Processing,1999,6:3377-3380 被引量:1
  • 8彭嘉雄,周文琳.红外背景抑制与小目标分割检测[J].电子学报,1999,27(12):47-51. 被引量:143
  • 9杨海军,梁德群,毕胜.基于图象方向性信息测度的图象象素分类[J].中国图象图形学报(A辑),2001,6(5):429-433. 被引量:17
  • 10徐英,周金鹏.基于邻域灰度分布的IR弱小目标检测[J].国防科技大学学报,2002,24(5):84-87. 被引量:10

共引文献4

同被引文献98

引证文献12

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部