期刊文献+

基于MATLAB的车灯光通量试验数据拟合分析 被引量:1

MATLAB-based Data Fitting and Analysis on Luminous Flux of Vehicle Lamp
下载PDF
导出
摘要 为了研究汽车灯泡光通量的变化规律,利用基于MATLAB的粒子群算法优化BP神经网络对汽车灯泡光通量试验数据进行非线性拟合分析,即用粒子群算法对目标函数进行改进,寻到最优权值和阈值应用于BP神经网络。比较改进神经网络(PSO-BP)算法与最小二乘法以及BP神经网络算法的拟合结果,结果表明改进神经网络(PSO-BP)算法的拟合能力显著提高。 In order to research the variation law of the luminous flux of vehicle lamp,a nonlinear fitting method based on the particle swarm optimization algorithm combining BP network was used to improve the objective function.The optimal weights and thresholds obtained by PSO were applied to the neural network.The comparison of the PSO-BP algorithm with least squares and BP neural network algorithm results shows that the nonlinear fitting ability of the PSO-BP neural network algorithm is significantly improved.
作者 黄高益 潘仕刚 郭锐 HUANG Gaoyi;PAN Shigang;GUO Rui(Liuzhou Customs,Liuzhou Guangxi 545001,China)
机构地区 柳州海关
出处 《汽车零部件》 2019年第6期29-33,共5页 Automobile Parts
关键词 光通量 BP神经网络 粒子群算法 最小二乘法 Luminous flux BP neural network Particle swarm optimization Least squares method
  • 相关文献

参考文献5

二级参考文献26

  • 1Kennedy J, Eberhart R C.Particle swarm optimization [C]. Proceedings of the IEEE International Conference on Neural Networks, 1995:1942-1948. 被引量:1
  • 2Holland J H. Adaptation in natural and artificial systems [M]. University Michigan Press, 1975. 被引量:1
  • 3Parsopoulos K E,Vrahatis M N.Recent approaches to global optimization problems through particle swarm optimization [J]. Natural Computing,2002,1 (3):235-306. 被引量:1
  • 4Hu X,Eberhart R C.Multiobjective optimization using dynamic neighborhood particle swarm optimization[C]. Proceedings of the IEEE congress on Evolutionary Computation, 2002: 1677-1681. 被引量:1
  • 5Hu X,Eberhart R C.Adaptive particle swarm optimization: detection and response to dynamic system[C]. Proceedings of the IEEE congress on Evolutionary Computation,2002:1666-1670. 被引量:1
  • 6Laskari E C,Parsopoulos K E,Vrahatis M N.Particle swarm optimization for maximum problems[C]. Proceedings of the IEEE Congress on Evolutionary computation, 2002:1582-1587. 被引量:1
  • 7Shi Y, Eberhart R C.A modified particle swarm optimization[C]. Proceedings of the IEEE Congress on Evolutionary Computation, 1998:303-308. 被引量:1
  • 8Shi Y, Eberhart R C.Empirical study of particle swarm optimization [C]. Proceedings of the IEEE Congress on Evolutionary Computation, 1999:1945-1950. 被引量:1
  • 9Shi Y, Eberhart R C.Fuzzy adaptive particle swarm optimization [C].Proceedings of the IEEE Congress on Evolutionary Computation, 2001:101-106. 被引量:1
  • 10Eberhart R C,Shi Y.Tracking and optimizing dynamic systems with particle swarms[C].Proceedings of the IEEE Congress on Evolutionary Computation,2001:94-100. 被引量:1

共引文献155

同被引文献16

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部