期刊文献+

基于稀疏卷积神经网络的考生识别算法 被引量:2

Examinee recognition algorithm based on sparse convolutional neural network
下载PDF
导出
摘要 针对传统的图像识别方法很难快速、准确地对考生进行识别从而验证其身份,文中详细地分析了卷积神经网络的原理及特性,提出一种基于多通道输入的稀疏卷积神经网络的考生识别算法,并与支持向量机及传统卷积神经网络进行比较,实验结果表明,该算法提高了考生识别的准确率,而且识别的速度大幅提高。 With the development of information technology, the face recognition technology is applied to various examinations,but the traditional image recognition method is difficult to identify the examinees quickly and accurately,and is uneasy to verify their identities. The principle and characteristics of convolutional neural network are analyzed in detail. An examinee recognition algorithm based on sparse convolutional neural network with multi - channel inputs is proposed,and compared with the algorithms based on support vector machine and traditional convolutional neural network. The experimental results show that the algorithm can improve the recognition accuracy and recognition speed of examinee significantly.
作者 赵树枫 周亮 罗双虎 柯立新 ZHAO Shufeng;ZHOU Liang;LUO Shuanghu;KE Lixin(University of Shanghai for Science and Technology,Shanghai 200433,China;Network and Information Center,Shanghai Municipal Educational Examinations Authority,Shanghai 200433,China;Information Center of the Shanghai Education Committee,Shanghai 200003,China)
出处 《现代电子技术》 北大核心 2019年第13期61-64,共4页 Modern Electronics Technique
基金 上海市教育委员会重点项目基金(Z2017364001)资助~~
关键词 考生识别 卷积神经网络 人脸识别 身份验证 多通道输入 方法比 examinee recognition convolutional neural network face recognition identity authentication multichannel input method comparison
  • 相关文献

参考文献5

二级参考文献57

  • 1史忠值.神经网络[M].北京:高等教育出版社,2009. 被引量:6
  • 2李彦宏.2012百度年会主题报告:相信技术的力量[R].北京:百度,2013. 被引量:2
  • 3李小丽,陈锻生.基于LLE+LDA的人脸识别方法[J].计算机应用,2007,27(B12):85-86. 被引量:4
  • 4Rumelhart D,Hinton G,Williams R.Learning representationsby back-propagating errors[J].Nature,1986,323(6088):533-536. 被引量:1
  • 5Hinton G,Salakhutdinov R.Reducing the dimensionality of data with neural networks[J].Science,2006,313(5786):504-507. 被引量:1
  • 6Ding Shi-fei,Zhang Yan-an,Chen Jin-rong,et al.Research onUsing Genetic Algorithms to Optimize Elman Neural Networks[J].Neural Computing and Applications,2013,23(2):293-297. 被引量:1
  • 7Ding Shi-fei,Jia Wei-kuan,Su Chun-yang,et al.Research ofNeural Network Algorithm Based on Factor Analysis and Cluster Analysis[J].Neural Computing and Applications,2011,20(2):297-302. 被引量:1
  • 8Lee T S,Mumford D.Hierarchical Bayesian inference in the vi-sual cortex[J].Optical Society of America,2003,20(7):1434-1448. 被引量:1
  • 9Serre T,Wolf L,Bileschi S,et al.Robust object recognition with cortex-like mechanisms[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2007,29(3):411-426. 被引量:1
  • 10Lee T S,Mumford D,Romero R,et al.The role of the primary visual cortex in higher level vision[J].Vision Research,1998,38 (15):2429-2454. 被引量:1

共引文献257

同被引文献43

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部