期刊文献+

水玻璃和玻璃纤维联合改良砂质黏性紫色土抗剪强度研究 被引量:9

Shearing Strength of Sandy Clayey Purple Soil Reinforced with Sodium Silicate and Glass Fiber in Combination
下载PDF
导出
摘要 为探究水玻璃、氯化钙与玻璃纤维联合作用对砂质黏性紫色土抗剪强度的影响,进行了不固结不排水三轴室内试验,探讨了不同质量分数的水玻璃溶液和氯化钙溶液(两种溶液质量分数为1:1)、不同质量分数的纤维以及两种溶液和纤维联合作用对土体强度的影响。结果表明:水玻璃溶液和氯化钙溶液的作用使内摩擦角逐渐增大,黏聚力变化不明显。土体中掺入纤维后,黏聚力显著增大,内摩擦角也逐步增加,当纤维掺量为0.8%时,黏聚力达到最大。当在质量分数均为20%的两种溶液改良土中掺入纤维时,在溶液和纤维共同作用下,土体的偏应力曲线随着纤维含量的增大而逐渐上升,黏聚力进一步增大,至纤维掺量为0.8%时达到最大,而内摩擦角变化幅度微弱。土体的黏聚力和内摩擦角是其颗粒结构性和抗侵蚀性的重要指标,研究结果可为砂质黏性紫色土地区通过改良土防治水土流失的方法提供科学依据。 【Objective】Purple soil, a kind of sandy cohesive soil developed from purple sandy mudstone of the Shaximiao Formation of the Jurassic under frequent weathering and erosion, is widely distributed in regions of Chongqing and Sichuan. It is prone to disasters, such as shallow landslides and soil erosion. Purple soil is closely related to engineering construction, but at present there are few researches in the engineering field paying attention to any engineering properties of purple soil. In view of the fact that the soil is prone to geological disasters, it is particularly urgent to study how to reinforce purple soil in construction projects. Though the traditional cement reinforcement is not bad in effect when compared with other reinforcement ways, it will bring about damages to the soil sources. For instance, once reinforced with cement, the soil can never be used again for plant cultivation. In recent years, a novel soil reinforcing technology has emerged and is going to be more and more popular because it is environment-friendly and very good in effect on improving soil strength. Therefore, this study was conducted to explore effect of the use of a mixture of sodium silicate solution, calcium chloride solution and glass fiber on shearing strength of the soil relative to ratio of the three components.【Method】an experiment was conducted in a triaxial chamber that can keep the material therein free from consolidation and drainage, to explore effect of the mixture on soil shearing strength, relative to ratio of the mixture. In the mixture sodium silicate solution and calcium chloride solution, set as 1:1 in ratio, was blended with glass fiber varying in addition rate.【Result】 Results show that sodium silicate solution and calcium chloride solution acted jointly to gradually increased internal friction angle of the soil, but did not affect much its cohesion. When fiber was added in, cohesion significantly increased, and internal friction angle did too, though gradually. When fiber was added alone at a r
作者 周超云 汪时机 李贤 胡东旭 黄伟 何丙辉 ZHOU Chaoyun;WANG Shiji;ZHOU Chaoyun;HU Dongxu;HUANG Wei;HE Binghui(College of Engineering and Technology, Southwest University, Chongqing 400715 , China;College of Resources and Environment, Southwest University, Chongqing 400715, China)
出处 《土壤学报》 CAS CSCD 北大核心 2019年第3期592-601,共10页 Acta Pedologica Sinica
基金 国家自然科学基金项目(11572262,41771312) 中央高校基本业务费专项资金(XDJK2018AB003)资助~~
关键词 水玻璃 氯化钙 玻璃纤维 抗剪强度 黏聚力 内摩擦角 Sodium silicate Calcium chloride Glass fiber Shearing strength Cohesion Internal friction angle
  • 相关文献

参考文献14

二级参考文献125

共引文献391

同被引文献121

引证文献9

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部