期刊文献+

第二类两端奇异Fredholm积分方程的分数阶线性插值方法 被引量:2

Fractional Linear Interpolation Method for Fredholm Integral Equations of the Second Kind with Two-Endpoint Singularities
下载PDF
导出
摘要 考虑第二类两端奇异的Fredholm积分方程,假设核函数在区间的两个端点非光滑,存在分数阶的Taylor展开式.对于这种类型的核函数,在包含端点的小区间上采用分数阶插值,在剩余区间上采用分段线性插值逼近,由此得到一种分数阶线性插值退化核方法.本文讨论该方法收敛的条件,给出收敛阶估计.数值算例表明这种分数阶混合线性插值方法对于两端奇异核函数有着较好的计算效果. The Fredholm integral equations of the second kind with two-endpoint singularities are considered, and it’s supposed that the kernel function possesses fractional Taylor’s expansions at both endpoints of the interval. For this type of kernel, the approximation is done by fractional order interpolation in a small interval involving the singularity and piecewise linear interpolation in the remaining part of the interval, which leads to a kind of fractional degenerate kernel method based on linear interpolation. We discuss the condition that the method can converge and give the convergence order estimation. Numerical examples demonstrate that the fractional order hybrid linear interpolation algorithm has good computational results for the kernel functions with two-endpoint singularities.
作者 郭嘉玮 王同科 GUO Jiawei;WANG Tongke(School of Mathematical Sciences, Tianjin Normal University, Tianjin 300387)
出处 《应用数学》 CSCD 北大核心 2019年第3期590-599,共10页 Mathematica Applicata
基金 国家自然科学基金资助项目(11471166) 天津市高等学校创新团队培养计划(TD13-5078)
关键词 第二类FREDHOLM积分方程 两端奇异核函数 分数阶Taylor展开式 分段混合线性插值 退化核方法 Fredholm integral equation of the second kind Kernel with two-endpoint singularities Fractional Taylor's expansion Piecewise hybrid linear interpolation Degenerate kernel method
  • 相关文献

参考文献4

二级参考文献11

  • 1王兴华,杨义群.关于低度光滑函数的插值余项[J].高等学校计算数学学报,1983,5(3):193-203. 被引量:2
  • 2Revers M. The divergence of Lagrange interpolation for Ixl at equidistant nodes[J]. Journal of Approximation Theory, 2000, 103(2): 269-280. 被引量:1
  • 3Lu Zhikang, Ge Xifang. The divergence of Lagrange interpolation for Ixl[J]. Analysis in Theory and Application, 2005, 21(4): 385-394. 被引量:1
  • 4Tachev G T. Piecewise linear interpolation with nonequidistant nodes[J]. Numerical Fnctional Analysis and Optimization, 2000, 21(7-8): 945-953. 被引量:1
  • 5Arandiga F. Interpolation and approximation of piecewise smooth functions[J]. SIAM Journal on Numerical Analysis, 2006, 43(1): 41-57. 被引量:1
  • 6Kolwankar K M. Recursive local fractional derivative[J], arXiv preprint arXiv:1312.7675 (2013). 被引量:1
  • 7Liu Zhifang, Wang Tongke and Gao Guanghua computation for insufficiently smooth functions[J] A local fractional Taylor expansion and its East Asian Journal on Applied Mathematics, 2015, 5(2): 176-191. 被引量:1
  • 8. Rapaid M R, Sekara T B, Govedarica V. A novel class of fractionally orthogonal quasi- polynomials and new fractional quadrature formulas[J]. Applied Mathematics and Computation, 2014, 245(15): 206-219. 被引量:1
  • 9Rebelo M, Diogo T. A hybrid collocation method for a nonlinear Volterra integral equation with weakly singular kernel[J]. Journal of Computational and Applied Mathematics, 2010, 234(9), 2859-2869. 被引量:1
  • 10王同科,佘海艳,刘志方.分数阶光滑函数线性和二次插值公式余项估计[J].计算数学,2014,36(4):393-406. 被引量:6

共引文献4

同被引文献33

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部