期刊文献+

非光滑函数的分数阶插值公式 被引量:4

A FRACTIONAL INTERPOLATION FORMULA FOR NON-SMOOTH FUNCTIONS
原文传递
导出
摘要 本文基于局部分数阶Taylor展开式构造非光滑函数的分数阶插值公式,证明了插值公式的存在和唯一性,给出了分数阶插值的Lagrange表示形式及其误差余项,讨论了一种混合型的分段分数阶插值和整数阶插值的收敛阶.数值算例验证了对于非光滑函数分数阶插值明显优于通常的多项式插值,并说明在实际计算中采用分段混合分数阶和整数阶插值可以使得插值误差在区间上分布均匀,能够极大地提高插值精度. This paper constructs a fractional interpolation formula for non-smooth functions based on the local fractional Taylor's expansion. The existence and uniqueness of the fractional interpolation formula are proved. The formula with Lagrange basis and its error remain- der are provided. The convergence order of a hybrid pattern for piecewise fractional order interpolation and integer-order interpolation is also discussed. Numerical examples demon- strate that the fractional interpolation is obviously superior to the traditional polynomial interpolation for non-smooth functions. They also show that the interpolating error can be uniformly distributed on the interval by using the piecewise hybrid interpolation, which can exceedingly improve the interpolation accuracy.
出处 《计算数学》 CSCD 北大核心 2016年第2期212-224,共13页 Mathematica Numerica Sinica
基金 国家自然科学基金(11471166)资助项目
关键词 非光滑函数 分数阶Taylor公式 分数阶插值公式 误差余项 收敛阶 Non-smooth function fractional Taylor's formula fractional interpolation formula error remainder convergence order
  • 相关文献

参考文献12

  • 1王兴华,杨义群.关于低度光滑函数的插值余项[J].高等学校计算数学学报,1983,5(3):193-203. 被引量:2
  • 2Revers M. The divergence of Lagrange interpolation for Ixl at equidistant nodes[J]. Journal of Approximation Theory, 2000, 103(2): 269-280. 被引量:1
  • 3Lu Zhikang, Ge Xifang. The divergence of Lagrange interpolation for Ixl[J]. Analysis in Theory and Application, 2005, 21(4): 385-394. 被引量:1
  • 4Tachev G T. Piecewise linear interpolation with nonequidistant nodes[J]. Numerical Fnctional Analysis and Optimization, 2000, 21(7-8): 945-953. 被引量:1
  • 5Arandiga F. Interpolation and approximation of piecewise smooth functions[J]. SIAM Journal on Numerical Analysis, 2006, 43(1): 41-57. 被引量:1
  • 6王同科,佘海艳,刘志方.分数阶光滑函数线性和二次插值公式余项估计[J].计算数学,2014,36(4):393-406. 被引量:6
  • 7Kolwankar K M. Recursive local fractional derivative[J], arXiv preprint arXiv:1312.7675 (2013). 被引量:1
  • 8Liu Zhifang, Wang Tongke and Gao Guanghua computation for insufficiently smooth functions[J] A local fractional Taylor expansion and its East Asian Journal on Applied Mathematics, 2015, 5(2): 176-191. 被引量:1
  • 9. Rapaid M R, Sekara T B, Govedarica V. A novel class of fractionally orthogonal quasi- polynomials and new fractional quadrature formulas[J]. Applied Mathematics and Computation, 2014, 245(15): 206-219. 被引量:1
  • 10Rebelo M, Diogo T. A hybrid collocation method for a nonlinear Volterra integral equation with weakly singular kernel[J]. Journal of Computational and Applied Mathematics, 2010, 234(9), 2859-2869. 被引量:1

二级参考文献17

  • 1王同科,张东丽,王彩华.Mathematica与数值分析实验[M].北京:清华大学出版社,2011. 被引量:9
  • 2王兴华,杨义群.关于低度光滑函数的插值余项[J].高等学校计算数学学报,1983,5(3):193-203. 被引量:2
  • 3Gancho T. Tachev. Piecewise linear interpolation with nonequidistant nodes[J]. Numerical Func- tional Analysis and Optimization, 2000, 21(7-8): 945-953. 被引量:1
  • 4Francesc Arandiga. Interpolation and approximation of piecewise smooth functions[J]. SIAM Jour- nal on Numerical Analysis, 2006, 43(1): 41-57. 被引量:1
  • 5Shantanu Das. Functional fractional calculus[M]. Springer, 2011. 被引量:1
  • 6Kolwankar KM, Gangal AD. Fractional differentiability of nowhere differentiable functions and dimensions[J]. Chaos An Interdisciplinary Journal of Nonlinear Science, 1996, 6(4): 505-513. 被引量:1
  • 7Kolwankar KM, Gangal AD. HSlder exponents of irregular signals and local fractional deriva- tives[J]. Pramana- Journal of Physics, 1997, 48(1): 49-68. 被引量:1
  • 8Ben Adda F, Cresson J. About non-differentiable functions[J]. Journal of Mathematical Analysis and Applications, 2001, 263(2): 721-737. 被引量:1
  • 9Babakhani A, Daftardar-Gejji V. On calculus of local fractional derivatives[J]. Journal of Mathe- matical Analysis and Applications, 2002, 270(1): 66-79. 被引量:1
  • 10Yan Chen, Ying Yan, Kewei Zhang. On the local fractional derivative[J]. Journal of Mathematical Analysis and Applications, 2010, 362(1): 17-33. 被引量:1

共引文献6

同被引文献18

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部