摘要
本文基于局部分数阶Taylor展开式构造非光滑函数的分数阶插值公式,证明了插值公式的存在和唯一性,给出了分数阶插值的Lagrange表示形式及其误差余项,讨论了一种混合型的分段分数阶插值和整数阶插值的收敛阶.数值算例验证了对于非光滑函数分数阶插值明显优于通常的多项式插值,并说明在实际计算中采用分段混合分数阶和整数阶插值可以使得插值误差在区间上分布均匀,能够极大地提高插值精度.
This paper constructs a fractional interpolation formula for non-smooth functions based on the local fractional Taylor's expansion. The existence and uniqueness of the fractional interpolation formula are proved. The formula with Lagrange basis and its error remain- der are provided. The convergence order of a hybrid pattern for piecewise fractional order interpolation and integer-order interpolation is also discussed. Numerical examples demon- strate that the fractional interpolation is obviously superior to the traditional polynomial interpolation for non-smooth functions. They also show that the interpolating error can be uniformly distributed on the interval by using the piecewise hybrid interpolation, which can exceedingly improve the interpolation accuracy.
出处
《计算数学》
CSCD
北大核心
2016年第2期212-224,共13页
Mathematica Numerica Sinica
基金
国家自然科学基金(11471166)资助项目
关键词
非光滑函数
分数阶Taylor公式
分数阶插值公式
误差余项
收敛阶
Non-smooth function
fractional Taylor's formula
fractional interpolation formula
error remainder
convergence order