期刊文献+

基于改进信息熵值分析的TBM掘进参数研究 被引量:2

TBM Driving Parameters Based on Improved Information Entropy Analysis
下载PDF
导出
摘要 复杂地质条件下的TBM掘进参数的有效预测可以对TBM施工进行针对性的指导,基于深圳地铁10号线孖-雅双护盾TBM区间实际掘进参数,建立了一种基于改进信息熵值分析的TBM掘进参数预测模型,通过前序参数的熵值权系数自适应调整来预判后续TBM参数值,模型以TBM推力和扭矩样本参数进行训练并以实际工程数据进行验证,通过残差分析和相关性分析得出的预测值和实际值相符,说明该模型具有较好的非线性映射能力,基于改进信息熵值分析的TBM掘进参数预测模型能直观反映TBM装备载荷地质适应性规律,可为TBM施工掘进参数设置提供参考,提前预判规避不良地层施工风险。 In this paper,effective prediction of TBM tunneling parameters under the complex geological conditions can provide the pertinent guidance for TBM construction. Based on the actual tunneling parameters of double shield of Fuya’s TBM section of Shenzhen metro line 10,a prediction model of TBM tunneling parameters based on the improved information entropy analysis is established. The following TBM parameters are predicted by adjusting the entropy weight coefficient of the preceding parameters adaptively. The model is trained by TBM thrust and torque sample parameters and verified by the actual engineering data. The residual analysis and correlation are carried out. The predicted values from the correlation analysis are in agreement with the actual values,which shows that the model has a good non-linear mapping ability. The prediction model of TBM tunneling parameters based on the improved information entropy analysis directly reflects the geological adaptability law of TBM equipment load. It can provide the reference for setting the tunneling parameters of TBM construction and avoid the construction risk of bad strata in advance.
作者 张兵 ZHANG Bing(State Key Laboratory of Shield Machine and Boring Technology,Zhengzhou 450001,China;China Railway Tunnel Group,Guangzhou 511458,China)
出处 《河南科学》 2019年第5期785-791,共7页 Henan Science
基金 国家自然科学基金资助项目(51805042,51478146) 国家863计划项目(2012AA041802) 中铁建投科技创新计划课题2016-01-3 中铁隧道局集团科技创新课题(隧研合2015-18) 深圳地铁集团科研课题(ZHDT-KY035/2017)
关键词 信息熵 TBM 残差分析 掘进参数 information entropy TBM residual analysis driving parameters
  • 相关文献

参考文献17

二级参考文献119

共引文献511

同被引文献21

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部