期刊文献+

基于用户特征属性的微博话题关键用户挖掘 被引量:4

Key users mining in micro-blogging topic based on user attributes
下载PDF
导出
摘要 针对微博话题存在时效性的特征以及用户之间交互行为特征,在经典PageRank算法的基础上,提出了基于用户交互的微博用户挖掘算法来有效挖掘推动微博话题流行的关键用户。首先介绍了微博话题关键用户的定义及其相关特征;其次,由于传统模型未考虑用户交互以及时间属性的影响,所以融合了时间属性以及用户之间交互特征,同时结合微博网络结构提出了MUR算法;最后,将算法与经典PageRank算法和TS算法作了比较。实验结果表明,模型在反映微博话题用户的时效性、话题推动以及对粉丝的影响力等方面表现较好,证明了模型的合理性和有效性。 Considering the timeliness of the microblogging topic and the feature of interaction between the users, on the basis of classical PageRank algorithm, this paper put forward a key user’s mining algorithm based on user interaction to effectively find topic-sensitive key users. Firstly, this paper introduced the definition of key users in microblog topic and its relevant characteristics. Secondly, in that the traditional models ignored the influence of user interaction and time attribute, this model fused the time property and the characteristics of interaction between the user together in this model at the first time and then it put forward the MUR algorithm with the combination of the microblogging network structure. Finally, it compared the algorithm with the classical PageRank algorithm and TS algorithm. The experimental results show that the model is more reasonable in terms of timeliness and topic driving, certificating the rationality and validity of the model.
作者 柯阳 隋杰 Ke Yang;Sui Jie(School of Engineering Science,University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《计算机应用研究》 CSCD 北大核心 2019年第6期1614-1617,1622,共5页 Application Research of Computers
基金 国家重点研发计划项目(2017YFB0803001) 国家自然科学基金面上项目
关键词 关键用户 微博用户排序 时间属性 用户交互 key user MUR(microblog user rank) time property user interaction
  • 相关文献

参考文献4

二级参考文献57

  • 1Milgram S. The small world problem. Psychology Today, 1967, 1(1): 60-67. 被引量:1
  • 2Watts D J, Strogatz S H. Collective dynamics of ' small- world network. Nature, 1998, 393(6684): 440-442. 被引量:1
  • 3Backstrom L, Boldi P, Rosa M, et al. Four degrees of sepa- ration. 2011, arXiv 1111.4570vl. 被引量:1
  • 4Christakis N A, Fowler J H. Connected The Surprising Power of Our Social Networks and How They Shape ()tar Lives--How Your Friends 'Friends' Friends Affect Every- thing You Feel, Think, and Do. New York, USA Back Bay Books, 2011. 被引量:1
  • 5Barabsi A L, Albert R. Emergence o{ scaling in random networks. Science, 1999, 286(5439): 509 512. 被引量:1
  • 6Wang Xiao-Fan, Li Xiang, Chen Guan-Rong. Network Science: An Introduction. Beijing: Higher Education Press, 2012(in Chinese). 被引量:1
  • 7Liu Jian-Guo, Ren Zhuo Ming, Guo Qiang, Wang Bing- Hong. Node importance ranking of complex networks. Aeta Physica Sinica, 2013, 62(17) : 178901(in Chinese). 被引量:1
  • 8Albert R, Jeong H, Barabfisi A-L. Error and attack toler- ance of complex networks. Nature, 2000, 406(6794) I 378- 482. 被引量:1
  • 9Pastor-Satorras R, Vespignani A. Epidemic spreading in scale free networks. Physical Review Letter, 2001, 86(14): 3200 3203. 被引量:1
  • 10Cohen R, Erez K, ben-Avraham D, Havlin S. Breakdown of the Internet under intentional attack. Physical Review Letter, 2001, 86(16).. 3682 3685. 被引量:1

共引文献135

同被引文献46

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部