期刊文献+

基于SARIMA模型的二氧化氮时间序列预测研究 被引量:1

Time series prediction of NO2 based on SARIMA Model
下载PDF
导出
摘要 基于烟台主城区2010年1月至2018年6月的NO2浓度数据,利用Eviews统计软件建立了季节自回归移动平均模型(SARIMA),经过序列平稳化、模型识别及模型诊断,SARIMA(2,0,3)(1,1,1)12模型的相对误差可控制率在5%以内,拟合效果较为理想。拟合及预测结果表明,烟台市主城区NO2浓度具有季节性特征,呈递增趋势,随着预测步长的延长,预测误差逐渐增大。SARIMA模型目前适合进行短期预测,今后可结合非线性动力学方法.对其进行改进。 Based on NO2 concentrations in main urban area of Yantai from January 2010 to June 2018,a seasonal autoregressive integrated moving average model(SARIMA)was established with the statistical software Eviews.After smooth sequence,model recognition and diagnosis,the relative error of SARIMA(2,0,3)(1,1,1)12 model could be controlled within 5%and the fitting results were satisfied.The fitting and predicted results showed that NO2 concentrations in main urban area of Yantai performed seasonal characteristics and an increasing trend.With the extension of prediction time,the error of SARIMA model increases.Thus,this model was suitable for short-time forecasting.In further study,this model may be improved by combining the theory of non-linear dynamics.
作者 王一龙 申云霞 陈晓红 WANG Yi-long;SHEN Yun-xia;CHEN Xiao-hong(Environmental Protection bureau of Zhifu district Yantai city,Yantai 264000,China;Housing and Construction Administration of Yantai High-tech Zone,Yantai 264670,China)
出处 《能源环境保护》 2019年第3期51-54,共4页 Energy Environmental Protection
关键词 SARIMA模型 NO2 预测 SARIMA model NO2 Prediction
  • 相关文献

参考文献12

二级参考文献84

共引文献150

同被引文献21

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部