期刊文献+

基于ARIMA的民勤绿洲水资源承载产值时间序列预测 被引量:1

A Time Series Forecasting Based on ARIMA for Minqin Value of Output Related to Water Resource
下载PDF
导出
摘要 长期以来水资源的合理利用关系着民勤绿洲的经济、生态、社会效益.对民勤绿洲1956-2009年的水资源承载产值进行分析,确定自回归移动平均模型(ARIMA),预测得到民勤绿洲2010-2015年水资源承载产值.结果表明:建立的ARIMA模型是有效的,预测值是可信赖的. For a long time, the rational utilization of water resources has influenced Minqin economic, ecological and social benefits. On the basis of analyzing Minqin value of output related to water resource from 1956 to 2009, the appropriate autoregressive intergrated moving average model (ARIMA) is determined and the value of output related to water resource in Minqin from 2010 to 2015 is predicted. The results show that the ARIMA model is effective and the forecast data can be trusted.
出处 《兰州交通大学学报》 CAS 2012年第3期177-181,共5页 Journal of Lanzhou Jiaotong University
关键词 时间序列ARIMA水资源承载产值 预测 time series ARIMA value of output related to water resource prediction
  • 相关文献

参考文献5

二级参考文献30

  • 1丁文斌.GDP总量预测方法探讨研究[J].统计与预测,2003(6):57-59. 被引量:14
  • 2刘兰娟,谢美萍.基于自适应小波神经网络的数据挖掘方法研究——对我国石油产量的预测分析[J].财经研究,2006,32(3):114-120. 被引量:4
  • 3Khashei M, Bijari M, Ardali G A R. Improvement of auto-regressive integrated moving average models using fuzzy logic and artificial neural networks [J]. Neurocomputing, 2009, (72): 956 -967. 被引量:1
  • 4Zhang G, Patuwo B E, Hu Y M. Forecasting with artificial neural networks: the state of the art [J]. International Journal of Forecasting, 1998, (14): 35- 62. 被引量:1
  • 5Kaastra, Boyd M. Designing a neural network for forecasting financial and economic time-series [J]. Neurocomputing, 1996, 10: 215-236. 被引量:1
  • 6Chen Y, Yang B, Dong J, Abraham A. Time-series forecasting using flexible neural tree model [J]. Inf. Sci. 2005, 174:219- 235. 被引量:1
  • 7Diordano F, La Rocca M, Perna C. Forecasting nonlinear time series with neural network sieve bootstrap [J]. Comput. Stat. Data Anal. 2007, 51: 3871-3884. 被引量:1
  • 8Andre Luis S Maia, Francisco de A T de Carvalho, Teresa B Ludermir. Forecasting models for interval-valued time series [J]. Neurocomputing, 2008, 71:3344 -3352. 被引量:1
  • 9Wedding, H D K, Cios K J. Time series forecasting by combining RBF networks, certainty factors, and the Box-Jenkins model [J]. Neurocomputing, 1996, (10): 149 -168. 被引量:1
  • 10Tseng, F M, Yu H C, Tzeng O H. Combining neural network model with seasonal time series ARIMA model [J]. Technological Forecasting and Social Change, 2002, (69): 71-87. 被引量:1

共引文献164

同被引文献13

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部