期刊文献+

基于FOCUSS二次加权的DOA估计方法

Method of DOA Estimation Based on Reweighted FOCUSS
下载PDF
导出
摘要 针对-SVD、FOCUSS 等稀疏重构算法应用波达方向(DOA)估计时,存在或运算量大、或精度不高的问题,提出了一种基于 FOCUSS 二次加权的信号 DOA 估计方法。将传统 DOA 估计表述为稀疏表示的信号模型,通过贝叶斯理论推导目标函数的最优解及加权矩阵,并在迭代过程中对结果进行二次加权优化,进一步增强恢复结果的稀疏性,提高恢复性能。仿真实验证明了该方法的优越性:与其他稀疏重构方法相比,该方法恢复精度高、稳健性好、运算量低。 When sparse reconstruction methods such as-SVD and FOCUSS resolve the problem of DOA estimation , it causes problems of heavy computation, or low accuracy. To address this issue, the method of DOA estimation based on reweighted FOCUSS is proposed. Firstly, the traditional DOA estimation is represented as a sparse signal model. Then the optimal solution and weighted matrix are derived by applying Bayesian Theory. During each iteration, the estimation is further optimized through re -weighted proceeding, and it further enhances sparsity of recovery result to improve performance. Simulation experiments are presented to prove the superiority of the method in this paper: comparing with other sparse reconstruction methods, the method in this paper possesses significant advantages of high recovery accuracy, good robustness and low computation.
作者 韩学兵 姜照君 HAN Xue-bing;JIANG Zhao-jun(Unit 95795 of PLA,Guilin 541003,China)
机构地区 解放军
出处 《火力与指挥控制》 CSCD 北大核心 2019年第5期74-77,共4页 Fire Control & Command Control
基金 广西自然科学基金资助项目(2014GXNSFBA118285)
关键词 FOCUSS 二次加权 稀疏重构 DOA估计 FOCUSS reweighted sparse reconstruction DOA estimation
  • 相关文献

参考文献2

二级参考文献27

  • 1Candès E J. Compressive sampling[C]. Proceedings ofInternational Congress of Mathematicians, EuropeanMathematical Society, Zurich, 2006: 1433-1452. 被引量:1
  • 2Candès E J and Tao T. Decoding by linear programming[J].IEEE Transactions on Information Theory, 2005, 51(12):4203-4215. 被引量:1
  • 3Donoho D L and Elad M. Optimally sparse representation ingeneral (nonorthogonal) dictionaries via 1 ?? minimization[J].Proceedings of the National Academy of Sciences of USA,2003, 100(5): 2197-2202. 被引量:1
  • 4Xu W, Khajehnejad M A, Avestimehr A S, et al.. Breakingthrough the thresholds: an analysis for iterative reweightedminimization via the grassmann angle framework[C].Proceedings of the International Conference on Acoustics,Speech, and Signal Processing (ICASSP), Dallas, 2010:5498-5501. 被引量:1
  • 5Troppb J A and Gilbert A C. Signal recovery from randommeasurements via orthogonal matching pursuit[J]. IEEETransactions on Infation Theory, 2007, 53(12): 4655-4666. 被引量:1
  • 6Needell D and VershyninR. Signal recovery from incompleteand inaccurate measurements via regularized orthogonalmatching pursuit[J]. IEEE Journal of Selected Topics SignalProcessing, 2010, 4(2): 310-316. 被引量:1
  • 7Needell D and Troppb J A. CoSaMP: iterative signal recoveryfrom incomplete and inaccurate samples[J]. Applied andComputational Harmonic Analysis, 2009, 26(3): 301-321. 被引量:1
  • 8Gorodnitsky I F and Rao B D. Sparse signal reconstructionsfrom limited data using FOCUSS: a re-weighted minimumnorm algorithm[J]. IEEE Transactions on Signal Processing,1997, 45(3): 600-616. 被引量:1
  • 9Rao B D, Engan K, Cotter S F, et al.. Subset selection innoise based on diversity measure minimization[J]. IEEETransactions on Signal Processing, 2003, 51(3): 760-770. 被引量:1
  • 10Cotter S F, Rao B D, Engan K, et al.. Sparse solutions tolinear inverse problems with multiple measurement vectors[J].IEEE Transactions on Signal Processing, 2005, 53(7):2477-2488. 被引量:1

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部