期刊文献+

模型噪声中的稀疏恢复算法研究 被引量:5

Research of Sparse Recovery Algorithm Based on Model Noise
下载PDF
导出
摘要 针对观测和传感矩阵都存在噪声扰动的欠定线性系统的稀疏恢复问题,该文基于FOCUSS(FOCal Underdetermined System Solver)算法提出了一种改进算法——SD(Synchronous Descending)-FOCUSS。文中由MAP(最大后验)估计方法推导出系统模型的的目标函数,应用松弛迭代算法对其进行优化从而找到近似最优的稀疏解。SD-FOCUSS算法可应用于MMV(多观测向量)模型。可证明SD-FOCUSS是收敛算法;最后用仿真实验展示了与其他算法相比时,新算法在准确性、稳定性等方面的优越性。 For sparse recovery of underdetermined linear systems where noise perturbations exist in both the measurements and sensing matrix, based on FOCal Underdetermined System Solver (FOCUSS) algorithm, an improved algorithm, named Synchronous Descending (SD) -FOCUSS, is proposed. The objective function of system model is deduced through a Maximum A Posteriori (MAP) estimation; then approximate optimum sparse-solution can be found while optimizing objective function using iterative relaxation algorithm. Another breakthrough of SD-FOCUSS is that the new algorithm can be applied to Multiple Measurement Vector (MMV) models. The convergence of SD-FOCUSS algorithm can be established with mathematical proof. The simulation results illustrate advantages of the new algorithm on accuracy and stability compared with other algorithms.
作者 韩学兵 张颢
出处 《电子与信息学报》 EI CSCD 北大核心 2012年第8期1813-1818,共6页 Journal of Electronics & Information Technology
关键词 信号处理 稀疏恢复 模型噪声 SD—FOCUSS 收敛性 Signal processing Sparse recovery Model noise Synchronous Descending-FOCal UnderdeterminedSystem Solver (SD-FOCUSS) Convergence
  • 相关文献

参考文献17

  • 1Candès E J. Compressive sampling[C]. Proceedings ofInternational Congress of Mathematicians, EuropeanMathematical Society, Zurich, 2006: 1433-1452. 被引量:1
  • 2Candès E J and Tao T. Decoding by linear programming[J].IEEE Transactions on Information Theory, 2005, 51(12):4203-4215. 被引量:1
  • 3Donoho D L and Elad M. Optimally sparse representation ingeneral (nonorthogonal) dictionaries via 1 ?? minimization[J].Proceedings of the National Academy of Sciences of USA,2003, 100(5): 2197-2202. 被引量:1
  • 4Xu W, Khajehnejad M A, Avestimehr A S, et al.. Breakingthrough the thresholds: an analysis for iterative reweightedminimization via the grassmann angle framework[C].Proceedings of the International Conference on Acoustics,Speech, and Signal Processing (ICASSP), Dallas, 2010:5498-5501. 被引量:1
  • 5Troppb J A and Gilbert A C. Signal recovery from randommeasurements via orthogonal matching pursuit[J]. IEEETransactions on Infation Theory, 2007, 53(12): 4655-4666. 被引量:1
  • 6Needell D and VershyninR. Signal recovery from incompleteand inaccurate measurements via regularized orthogonalmatching pursuit[J]. IEEE Journal of Selected Topics SignalProcessing, 2010, 4(2): 310-316. 被引量:1
  • 7Needell D and Troppb J A. CoSaMP: iterative signal recoveryfrom incomplete and inaccurate samples[J]. Applied andComputational Harmonic Analysis, 2009, 26(3): 301-321. 被引量:1
  • 8Gorodnitsky I F and Rao B D. Sparse signal reconstructionsfrom limited data using FOCUSS: a re-weighted minimumnorm algorithm[J]. IEEE Transactions on Signal Processing,1997, 45(3): 600-616. 被引量:1
  • 9Rao B D, Engan K, Cotter S F, et al.. Subset selection innoise based on diversity measure minimization[J]. IEEETransactions on Signal Processing, 2003, 51(3): 760-770. 被引量:1
  • 10Cotter S F, Rao B D, Engan K, et al.. Sparse solutions tolinear inverse problems with multiple measurement vectors[J].IEEE Transactions on Signal Processing, 2005, 53(7):2477-2488. 被引量:1

同被引文献22

  • 1Schmidt R. Muhiple Emitter Location and Signal Parameter Estimation [J]. IEEE Trans. Antennas Propagat, 1986,34 (3): 276-280. 被引量:1
  • 2Paulraj A, Roy R,Kailath T. Esprit- a Subspace Rotation Approach to Estimation of Parameters of Cisoids in Noise[J].IEEE Trans. Acoust., Speech, Signal Process, 1986,34 (3):1340-1342. 被引量:1
  • 3Joel A T. Greed is Good: Algorithmic Results for Sparse Ap- proximation [J]. IEEE Trans. on Inf. Theory,2004,50 (10): 2231-2242. 被引量:1
  • 4Malioutov D, Cetin M ,Willsky A S. A Sparse Signal Recon- struction Perspective for Source Localization with Sensor Ar- rays [J]. IEEE Trans. Signal Process, 2005,53 (8): 3010-3022. 被引量:1
  • 5Cotter S F, Rao B D, Engan K, et al. Sparse Solutions to Lin- ear Inverse Problems with Multiple Measurement Vectors [J ]. IEEE Trans. Signal Process, 2005,53 (7): 2477-2488. 被引量:1
  • 6Herman M A, Strohmer T. General Deviants: An Analysis of Perturbations in Com-pressed Sensing [ J ]. IEEE Journal of Selected Topics in Signal Process, 2010,4 ( 2 ): 342-349. 被引量:1
  • 7Rao B D ,Engan K ,Cotter S F ,et al. Subset Selection in Noise Based on Diversity Measure Minimization [J]. IEEE Trans. Signal Process, 2003,51 (3): 760-770. 被引量:1
  • 8Zhu H, Leus G,Giannakis G B. Sparsity-Cognizant Total Least-Squares for Perturbed Compressive Sampling [J]. IEEE Trans. Signal Process, 2011,59 (5): 2002-2016. 被引量:1
  • 9Han X, Zhang H, Li G. Fast Algorithms for Sparse Recovery with Perturbed Dictionarv[EB/OL ].Arxiv. 2011. 被引量:1
  • 10金坚,谷源涛,梅顺良.压缩采样技术及其应用[J].电子与信息学报,2010,32(2):470-475. 被引量:78

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部