期刊文献+

基于机器学习的工业控制网络异常检测方法 被引量:6

Industrial control network anomaly detection method based on machine learning
下载PDF
导出
摘要 针对工业控制网络中常用的Modbus协议,提出了一种工业控制网络的异常检测方法。使用n-gram(n=0.5,1,1.5,2,2.5)算法从Modbus正常报文帧的有效载荷中进行特征提取,确定出5组特征向量,并结合单类支持向量机(OCSVM)算法训练出5个初级学习器,对5个同质的初级学习器采用“学习法”进行集成,最终得出次级学习器,利用上述两层模型,即可完成异常识别。在气体管道网络原始数据集中进行试验,最终误报率为8%,漏报率为6%。 For the Modbus protocol widely used in industrial control networks,an anomaly detection method for industrial control networks is proposed.It uses the n - gram ( n =0.5,1,1.5,2,2.5) algorithm to extract features from the payload of the Modbus normal frames,and obtains five sets of feature vectors. Then five primary learners are trained with a One-Class Support Vector Machine(OCSVM),and five homogeneous primary learner models are combined with “learning method”. Finally,the secondary learner is obtained.Using the above two-layer model,the abnormal recognition can be completed.In intrusion detection experiment of gas pipeline,the final false positive rate was 8%,and the false negative rate was 6%.
作者 邵俊杰 董伟 冯志 Shao Junjie;Dong Wei;Feng Zhi(The 6th Research Institute of China ElectronicsCorporation,Beijing100083,China)
出处 《信息技术与网络安全》 2019年第6期17-20,25,共5页 Information Technology and Network Security
基金 国家重点研发计划网络空间安全专项经费资助(工控系统安全主动防护关键技术和产品研发)(2018YFB0803502)
关键词 N-GRAM 单类支持向量机 集成学习 工业控制网络 异常检测 n -gram One-Class Support Vector Machine(OCSVM) ensemblelearning industrial control network abnormal data detection
  • 相关文献

参考文献4

二级参考文献63

  • 1诸葛建伟,王大为,陈昱,叶志远,邹维.基于D-S证据理论的网络异常检测方法[J].软件学报,2006,17(3):463-471. 被引量:56
  • 2李洋,方滨兴,郭莉,田志宏.基于主动学习和TCM-KNN方法的有指导入侵检测技术[J].计算机学报,2007,30(8):1464-1473. 被引量:31
  • 3Patcha A,Park J M.An overview of anomaly detection techniques:existing solutions and latest technological trends[J].Computer Networks,2007,51 (12):3448-3470. 被引量:1
  • 4Lazarevic A,Kumar V,Srivastava J.Intrusion detection:a survey[M] //Managing Cyber Threats.Springer,2005:19-78. 被引量:1
  • 5Early J,Brodley C.Behavioral features for network anomaly detection[M] //Machine Learning and Data Mining for Computer Security.Springer,2006:107-124. 被引量:1
  • 6Mahoney M,Chan P K.PHAD:packet header anomaly detection for idemifying hostile network traffic[DB/OL].http://cs.fit.edu/~ mmahoney/paper3.pdf,2013-06-17. 被引量:1
  • 7Kotaiantis S,Kanellopoulos D,Pintelas P.Data preprocessing for supervised leaning[J].International Journal of Computer Science,2006 (1):111-117. 被引量:1
  • 8Garea-Teodoro P,Daz-Verdejo J,Macia-Fernandez G,et al.Anomaly-based network intrusion detection:techniques,systems and challenges[J].Computers&Security,2009,28 (1/2):18-28. 被引量:1
  • 9Damashek M.Gauging similarity with N-grams:language independent categorization of text[J].Science,1995,267:843-848. 被引量:1
  • 10Davis J J,Clark A J.Data preprocessing for anomaly based network intrusion detection:a review[J].Computers&Security,2011,30(6/7):353-375. 被引量:1

共引文献49

同被引文献31

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部