期刊文献+

基于FCM-ANN的化工储罐异常检测方法研究 被引量:1

RESEARCH ON ABNORMAL DETECTION OF CHEMICAL STORAGE TANK BASED ON FCM-ANN
下载PDF
导出
摘要 如何准确地检测出储罐运行的异常状态是工业控制系统的核心问题,针对传统的有监督学习需要大量学习样本,而无监督学习准确率不足的问题,提出一种基于FCM-ANN的异常检测方法。该方法基于三层结构模型,FCM层不需要任何先验知识,对数据进行初步异常检测,ANN层对FCM层的每个类分别进行神经网络学习,最后通过ANN集成得到检测结果。对采集的储罐运行状态数据进行仿真后,结果表明该方法比ANN、FCM和Nave Bayes方法有更优的检测性能。 How to detect the abnormal state of the operation of the storage tank is the core problem in industrial control systems. Most of the detection methods proposed so far employ a supervised-learning or unsupervised-learning technique,the former fails to detect unknown anomalies while the latter requires large amounts of learning data. In order to solve the above problems,this paper presents a hybrid algorithm named FCM-ANN which is a mixture of Fuzzy CMeans clustering and Artificial Neural Network. There are three phases involved in the algorithm,in the first phase,namely the FCM layer,FCM algorithm is used to separate the data into several clusters and most of the abnormal data gather together. In second phase,different ANNs is trained based on various clusters and at last neural network ensemble is used to combine the results of different ANNs. Some experiments are conducted on the database of storage tank operation and the results indicate the proposed algorithm is able to detect anomalies with better detection performance compared with ANN,FCM and Nave Bayes.
出处 《计算机应用与软件》 2017年第2期214-219,共6页 Computer Applications and Software
关键词 储罐 异常检测 FCM ANN 三层结构模型 Storage tank Anomaly detection FCM ANN Three layer structure
  • 相关文献

参考文献4

二级参考文献35

  • 1诸葛建伟,王大为,陈昱,叶志远,邹维.基于D-S证据理论的网络异常检测方法[J].软件学报,2006,17(3):463-471. 被引量:56
  • 2李洋,方滨兴,郭莉,田志宏.基于主动学习和TCM-KNN方法的有指导入侵检测技术[J].计算机学报,2007,30(8):1464-1473. 被引量:31
  • 3[1]D.Djurdjanovic,J.Lee,J.Ni.Watchdog Agent-an Infortronics-based prognostics approach for product performance degradation assessment and prediction[J].Advanced Engineering Informatics,2003,17:109-125. 被引量:1
  • 4[2]Javitz,H.S.,Valdes,A..The SRI IDES Statistical Anomaly Detector.In Proceedings of the IEEE Symposium on Research in Security and Privacy,316-326. 被引量:1
  • 5佘二永,王润生,徐学文.基于预处理模式的D-S证据理论改进方法[J].模式识别与人工智能,2007,20(5):711-715. 被引量:4
  • 6LEE W, STOLFO S J. A framework for constructing features andmodels for intrusion detection systems[J]. ACM Transactions on In-formation and System Security, 2000,3(4):227-261. 被引量:1
  • 7LI M. An approach to reliably identifying signs of DDOS flood attacksbased on LRD traffic pattern recognition[J]. Computers & Security,2004,23(7):549-558. 被引量:1
  • 8WEI L, GHORBANI A A. Network anomaly detection based onwavelet analysis[J]. EURASIP Journal on Advances in Signal Proc-essing, 2009,12(5):1234-1249. 被引量:1
  • 9LI M. Change trend of averaged Hurst parameter of traffic underDDOS flood attacks[J]. Computers & Security, 2006,25(3):213-220. 被引量:1
  • 10WANG Y, WONG J, MINER A. Anomaly intrusion detection usingone class SVM[A]. Proceedings of the Fifth Annual IEEE SMC onInformation Assurance Workshop[C]. 2004.358-364. 被引量:1

共引文献302

同被引文献3

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部