期刊文献+

基于改进VEPSO的MMC-MTDC系统多目标最优潮流方法研究 被引量:1

Research on the Multi-objective Optimal Power Flow Approach to MMC-MTDC Based on Improved VEPSO
下载PDF
导出
摘要 针对模块化多电平换流器型多端直流输电系统(Modular Multilevel Converter Multi-Terminal DC,MMCMTDC)最优潮流问题,提出一种基于改进向量估计粒子群算法(Vector Evaluated Particle Swarm Optimization,VEPSO)的多目标最优潮流优化方法。首先建立MMC-MTDC分层控制和优化体系,换流站级采用直流电压斜率控制策略以稳定直流电压和平衡有功功率,系统级考虑线损和电压不平衡度建立多目标潮流优化模型。在兼顾系统稳定和功率平衡等约束条件的同时,加入换流站N-1约束,通过对系统进行多目标潮流优化得到MMC控制目标参考值,最终实现系统的优化运行。针对等式约束和不等式约束条件,提出了一种基于动态调整罚函数的方法以提高算法的收敛性。最后通过优化和仿真验证了所提基于改进VEPSO的多目标最优潮流计算方法的有效性。 To solve the optimal power flow problem in modular multilevel converter multi-terminal DC transmission system(MMC-MTDC),this paper proposed a multi-objective optimal power flow approach based on the improved vector estimation particle swarm optimization(VEPSO).First step was to establish a MMC-MTDC hierarchical control and optimization system.Next step was to adopt the DC voltage droop control strategy in the station level to stabilize the DC voltage and balance the active power.In the system level,there was a multi-objective power flow optimization model considering the line loss and voltage imbalance.To obtain the reference value of control target and to achieve the optimal operation of the system,this paper carried out multi-objective power flow optimization for the system while adding N-1 security constraint of the converter station and taking into consideration the system stability and power balance simultaneously.As for the equality constraints and inequality constraints,this paper advocated a method based on the dynamic adjustment of penalty function to improve the convergence of the algorithm.Finally,this paper proved the effectiveness of the proposed multi-objective optimal power flow solutions based on improved VEPSO by optimization and simulation test.
作者 艾欣 荣经国 王坤宇 AI Xin;RONG Jingguo;WANG Kunyu(State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources,North China Electric Power University,Beijing 102206,China)
出处 《华北电力大学学报(自然科学版)》 CAS 北大核心 2019年第3期1-8,共8页 Journal of North China Electric Power University:Natural Science Edition
基金 国家重点研发计划项目(2016YFB0900500) 北京市自然科学基金项目(3182037)
关键词 模块化多电平换流器 多端直流 多目标最优潮流 向量估计粒子群算法 罚函数 modular multilevel converter multi-terminal DC multi-objective optimal power flow vector evaluated particle swarm optimization(VEPSO) penalty function
  • 相关文献

参考文献11

二级参考文献164

共引文献904

同被引文献14

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部