摘要
为探究含电子电力变压器的电力系统最优潮流问题,在分析电子电力变压器简化模型、最优潮流的控制变量以及约束条件的基础上,建立了综合考虑经济因素和电压稳定性的含电子电力变压器的多目标最优潮流模型。模型中将减少发电成本和提高负荷裕度指标作为目标函数,考虑了电子电力变压器灵活的有功无功调节能力、有载调压变压器的电压调节能力、可调度负荷及可调无功电源的有功无功调节能力,提出使用基于遗传算法和内点算法的混合算法对最优潮流模型进行求解,算法的主要思想是以遗传算法为框架,对离散变量进行优化,在遗传算法的每一次迭代过程中,采用内点算法对每个体进行连续变量的优化和适应度评估。基于IEEE-14节点算例,分别进行了基于混合算法和基于内点法的最优潮流计算,计算结果验证了文章所提模型的合理性和算法的有效性。
In order to explore the optimal power flow problem of the power system with electronic power transformers, based on the analysis of the simplified model of electronic power transformers, the control variables of the optimal power flow, and the constraints, A multiobjeetive optimal power flow model is established for electric power transformers with eeononfie factors and voltage stability. The model takes reducing the cost of power generation and increasing the load margin as the target function, and considers the flexible active and reactive power adjustment ability of electronic power transformer, voltage adjustment ability of loaded voltage regulating Transformer, dispatching load, and active and reactive power adjustment ability- of adjustable reactive power supply. A hybrid algorithm based on genetic algorithm and internal point algorithm is proposed to solve the optimal power flow model. The main idea of the algorithm is to use genetic algorithm as a framework to optimize discrete variables. In each iteration of genetic algorithm, The internal point algorithm is used to evaluate the continuous variable optimization and adaptability of each individual. Based on the IEEE14 node example, the optimal flow calculation based on the hybrid algorithm and the internal point method is carried out. The calculation results verify the rationality of the proposed model and the effectiveness of the algorithm.
作者
欧阳蓉
OUYANG Rong(Guangdong Power Grid Materials Company Limited,Guangzhou 510627 Guangdong,China)
出处
《电力大数据》
2018年第12期69-75,共7页
Power Systems and Big Data
关键词
多目标最优潮流
电子电力变压器
负荷裕度指标
内点算法
遗传算法
nmlti-objective optimal power flow
electronic power transformer
load margin index
interior point method
genetic algorithm