期刊文献+

DNA机器人在AFM图像中的分割和识别 被引量:2

Segmentation and Recognition of DNA Robots in AFM Images
下载PDF
导出
摘要 DNA机器人是一种由DNA大分子通过折纸技术制作的纳米级别的机器人,可以用于癌症的诊断和治疗。为了对DNA机器人形态进行研究,研究人员利用原子力显微镜(Atomic Force Microscope,AFM)拍摄出机器人的AFM图像。针对AFM图像多噪声及被观察的DNA机器人大规模重叠的特点,从除噪、分割、识别三个过程展开,提出了一种基于多尺度改进的分水岭AFM图像切割算法,以傅里叶描述子、曲率尺度空间描述符和Hu矩作为特征,实现DNA纳米机器人的分类和识别。 DNA robot is a type of nano robots made from DNA macromolecules with the origami technology. DNA robots can be used for the diagnosis and treatment of the cancer. To research the DNA robots, Atomic Force Microscope(AFM)is used to take the photographs of the DNA robots. Since there are many noises in the AFM images and overlaps among the DNA robots, removing noises, segmentation, and recognition are processed. The watershed based on multiscale technique is improved for the segmentation of DNA robots. DNA robots are classified and recognized with the Fourier descriptors, Curvature Scale Space(CSS)method and Hu moment.
作者 童麟 韩越兴 小长谷明彦 TONG Lin;HAN Yuexing;Akihiko Konagaya(School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China;Shanghai Advanced Research Institute, University of Chinese Academy of Sciences, Shanghai 200000, China;Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Tokyo 226-8502, Japan;National Institute of Informatics, Tokyo 101-8430, Japan)
出处 《计算机工程与应用》 CSCD 北大核心 2019年第11期192-198,220,共8页 Computer Engineering and Applications
基金 国家重点研发计划(No.2016YFB0700502) 上海市浦江人才计划资助(No.17PJ1402900) 国家自然科学基金青年科学基金(No.61603237) A Grant-in-Aid for Scientific Research on Innovation Areas“Molecular Robotic”(No.24104004)of The Ministry of Education,Culture,Sports,Science,and Technology,Japan
关键词 原子力显微镜(AFM)图像 分水岭算法 DNA机器人 物体识别 噪声消除 Atomic Force Microscope(AFM) image watershed algorithm DNA robots object recognition noise elimination
  • 相关文献

参考文献2

二级参考文献12

  • 1Feng-Sheng Chen,Chih-Ming Fu,Chung-Lin Huang.Hand Gesture Recognition Using a Real-time Tracking Method and Hidden Markov Models[J].Image and Vision Computing 2003,21:745-758. 被引量:1
  • 2MilanSonka VaclavHlavac RogerBoyle.Image Processing Analysis and Machine Vision[M].人民邮电出版社,2003.. 被引量:1
  • 3A.K.Jain,L.Hong,R.Bolle.On-line fingerprint verification. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1997 被引量:1
  • 4D.Maio,D.Maltoni.Direct gray-scale minutiae detection in fingerprints. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1997 被引量:1
  • 5Z.X.Shi,V.Govindaraju.A chaincode based scheme for fingerprint feature extraction. Pattern Recognition . 2006 被引量:1
  • 6X.D.Jiang,M.H.Liu.Reference point detection for fingerprint recognition. IEEE Proceedings of the 17th International Conference on Pattern Recognition . 2004 被引量:1
  • 7X.C.He,N.H.C.Yung.Curvature Scale Space Corner Detectorwith adaptive threshold and dynamic region of support. Proceedings of the 17th International Conference on Pattern Recognition . 2004 被引量:1
  • 8J.Canny.A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI . 1986 被引量:1
  • 9Jiang XD,Yau WY,Ser W.Detecting the fingerprint minutiae by adaptive tracing the gray-level ridge. Pattern Recognition . 2001 被引量:1
  • 10T. Y. Zhang,C. Y. Suen.A Fast Parallel Algorithm for Thinning Digital Patterns. Communications of the ACM . 1984 被引量:1

共引文献29

同被引文献11

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部