期刊文献+

基于多目标Camshift手势识别 被引量:4

Gesture Recognition Based on Multi-Objective Camshift
下载PDF
导出
摘要 基于单目视觉下的手势识别技术一般由手势建模、特征提取、手势匹配等几个关键技术构成。手势跟踪算法目前主流的是粒子滤波算法和Camshift算法。系统采用Camshift算法,将人手图像由RGB空间转换到HSV空间后,在HSV空间利用半自动预定义模板颜色对人手进行分割,并对其进行改进实现多目标跟踪,由于Camshift算法为半自动算法,在对手势进行跟踪前需对手势进行手动标定,系统采用了手势跟踪与手势识别技术结合的方法,改进了Camshift算法,解决了Camshift的半自动问题和实现多目标跟踪,实现双手的手势识别。 The gesture recognition technology based on monocular vision is usually constituted by the key technologies of gesture modeling,gesture segmentation,feature extraction and gesture matching.The most popular gesture tracking algorithms based on monocular vision are the particle filtering algorithm and Camshift algorithm.This system converts the hand images from RGB space to HSV space,segments the hands using templates predefined color value,makes some improvements and realizes multi-objective target tracking.Because Camshift algorithm is semi-automatic,the gesture must be calibrated manually before being tracked.The system combines the gesture tracking and gesture recognition technology,improves the Camshift algorithm,solves the problem of being semi-automatic,and realizes multi-objective target tracking and finally realizes the gesture recognition of both hands.
出处 《电子科技》 2012年第2期71-73,81,共4页 Electronic Science and Technology
关键词 手势识别 手势跟踪 CAMSHIFT 多目标 gesture recognition hand tracking camshift multi-objective
  • 相关文献

参考文献5

二级参考文献8

  • 1Feng-Sheng Chen,Chih-Ming Fu,Chung-Lin Huang.Hand Gesture Recognition Using a Real-time Tracking Method and Hidden Markov Models[J].Image and Vision Computing 2003,21:745-758. 被引量:1
  • 2MilanSonka VaclavHlavac RogerBoyle.Image Processing Analysis and Machine Vision[M].人民邮电出版社,2003.. 被引量:1
  • 3CIPOLLA R, HOLLING HURST N J. Human robot interface by pointing with uncalibrated stereo vision[J]. Image and Vision Computing, 1993(14): 171-178. 被引量:1
  • 4陶霖密 彭振云 徐光祐.人体肤色特征[J].软件学报,2000,11(1):1033-1043. 被引量:1
  • 5HYEON KYU LEE, JIN H KIM. An HMM-based threshold model approach for gesture recognition [ J ]. IEEE, Pattern Analysis and Machine Intelligence, 1999, 21(10): 961-973. 被引量:1
  • 6祝远新,徐光祐,黄浴.基于表观的动态孤立手势识别[J].软件学报,2000,11(1):54-61. 被引量:15
  • 7王涛,刘文印,孙家广,张宏江.傅立叶描述子识别物体的形状[J].计算机研究与发展,2002,39(12):1714-1719. 被引量:85
  • 8杨盈昀,谢婷婷,施美楠.基于肤色的人脸检测算法研究[J].北京广播学院学报(自然科学版),2002,9(4):11-20. 被引量:9

共引文献43

同被引文献33

  • 1闫钧华,陈少华,艾淑芳,李大雷,段贺.基于Kalman预测器的改进的CAMShift目标跟踪[J].中国惯性技术学报,2014,12(4):536-542. 被引量:29
  • 2肖冰,王映辉.人脸识别研究综述[J].计算机应用研究,2005,22(8):1-5. 被引量:53
  • 3张良国 吴江琴 高文 等.基于Hausdorff距离的手势识别.中国图像图形学报,2003,8(6):56-57. 被引量:2
  • 4李文生,解梅,邓春健.基于机器视觉的动态多点手势识别方法[J].计算机工程设计,2012,5(8):60-72. 被引量:2
  • 5Microsoft Corp. Redmond WA. Kinect for Xbox 360[S]. 被引量:1
  • 6J Salvi, J Pages, J Battle.Pattern codification strategies in structured light systems[J]. Pattern Recognition, 2004, 37 (4): 827-849. 被引量:1
  • 7P Lavoie, D Ionescu, E Petriu. 3D reconstruction using an unealibrated stereo pair of encoded images[C]//In Proceedings of the Int. Conf. on Image Processing, 1996. 被引量:1
  • 8Chadi ALBITAR, Pierre GRAEBLING, Christophe DOIGNON. Robust Structured Light Coding for 3D Reconstruction[C]//In Proc. ICCV, 2007. 被引量:1
  • 9P Lavoie, D Ionescu, E Petriu. 3D reconstruction using an uncalibrated stereo pair of encoded images[C]//In Proceedings of the Int. Conf. on Image Processing, 1996. 被引量:1
  • 10Jamie Shotton, Andrew Fitzgibbon, Mat Cook, et al. Real-Time Human Pose Recognition in Parts from Single Depth Images[C]//In Proc. CVPR, 2011. 被引量:1

引证文献4

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部