摘要
以手术机器人的从手为研究对象,使用径向基函数(RBF)神经网络对手术机器人从手进行基于模型分块逼近的自适应控制。针对手术机器人从手动力学模型建模不准确的问题,采用RBF神经网络分别对从手动力学模型中的3个系数矩阵分块逼近,计算出从手的精确动力学模型,同时动态调整控制律实现对系统的稳定自适应控制。在系统稳定性分析的基础上,进行了仿真实验。实验结果表明:该控制算法改进了系统控制性能,具有精度高、稳定性好、鲁棒性强的特点。
Taking surgical robot slave-hand as research object, adaptive control based on block approximation was completed to the surgical robot slave-hand based on radial basis function(RBF) neural network. Aiming at the inaccurate modeling for the surgical robot slave-hand, RBF neural network was used to segment the three coefficients matrixes from the slave-hand mechanics model respectively, and the actual dynamics model of the slave-hand was obtained. At the same time,control law was adjusted dynamically to achieve stable and adaptive control of the system. Based on the stability analysis of the algorithm, the simulation experiment was completed. Experimental results show that the proposed control algorithm improves the system control performance and has the characteristics of high precision, good stability and strong robustness.
作者
张禹
杨铭
ZHANG Yu;YANG Ming(Institute of Mechanical Engineering,Shenyang University of Technology, Shenyang Liaoning 110870, China)
出处
《机床与液压》
北大核心
2019年第9期63-67,共5页
Machine Tool & Hydraulics
基金
沈阳市机器人及智能制造装备重点实验室建设(F13-297-1-00)