摘要
在满足一定的正则性假设条件下,建立了θ-型Calderón-Zygmund算子T_θ在一类变指数Lebesgue空间上的加权有界性.进一步得到了T_θ在加权变指数Herz空间和Herz-Morrey空间上的有界性.另外,还证明了相应的交换子[b,T_θ]在广义加权变指数Morrey空间上是有界的.
We obtain some boundedness results for the θ-type Calderón-Zygmund operators Tθ under natural regularity assumptions on a class of generalized Lebesgue spaces with weight and variable exponent. Furthermore, the boundedness of Tθ is established on the weighted variable Herz and Herz-Morrey spaces based on the above conclusions. We also prove the boundedness of the corresponding commutator [b,Tθ]in the generalized weighted Morrey spaces with variable exponent.
作者
杨沿奇
陶双平
Yan Qi YANG;Shuang Ping TAO(College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, P. R. China)
出处
《数学学报(中文版)》
CSCD
北大核心
2019年第3期503-514,共12页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(11561062)