期刊文献+

Amphiphilic sodium alginate-vinyl acetate microparticles for drug delivery 被引量:3

Amphiphilic sodium alginate-vinyl acetate microparticles for drug delivery
下载PDF
导出
摘要 To overcome the fast or burst release of hydrophilic drugs from hydrophilic alginate-based carriers,hydrophobic molecule(vinyl acetate,VAc)was grafted on alginate(Alg),which was further used to prepare drug carriers.Amphiphilic Alg-g-PVAc hydrogel beads were firstly prepared by emulsification/internal gelation technique for the loading of bovine serum albumin(BSA).Then,chitosan was coated on the surface of beads to form novel amphiphilic Alg-g-PVAc/chitosan(Alg-g-PVAc/CS)microcapsules.The BSA-loading amphiphilic Alg-g-PVAc/chitosan(Alg-g-PVAc/CS)microcapsules display similar morphology and size to the hydrophilic alginate/chitosan(AC)microcapsules.However,the drug loading and loading efficiency of BSA in Alg-g-PVAc/CS microcapsules are higher,and the release rate of BSA from Alg-g-PVAc/CS microcapsules is slower.The results demonstrate that the introduction of hydrophobic PVAc on alginate can effectively help retard the release of BSA,and the higher degree of substitution is,the slower the release rate is.In addition,the complex membrane can also be adjusted to delay the release of BSA.As a whole,amphiphilic sodium alginate-vinyl acetate/CS microparticles could be developed for macromolecular drug delivery. To overcome the fast or burst release of hydrophilic drugs from hydrophilic alginate-based carriers, hydrophobic molecule(vinyl acetate, VAc) was grafted on alginate(Alg), which was further used to prepare drug carriers. Amphiphilic Alg-g-PVAc hydrogel beads were firstly prepared by emulsification/internal gelation technique for the loading of bovine serum albumin(BSA). Then, chitosan was coated on the surface of beads to form novel amphiphilic Alg-g-PVAc/chitosan(Alg-g-PVAc/CS) microcapsules.The BSA-loading amphiphilic Alg-g-PVAc/chitosan(Alg-g-PVAc/CS) microcapsules display similar morphology and size to the hydrophilic alginate/chitosan(AC) microcapsules. However, the drug loading and loading efficiency of BSA in Alg-g-PVAc/CS microcapsules are higher, and the release rate of BSA from Alg-g-PVAc/CS microcapsules is slower. The results demonstrate that the introduction of hydrophobic PVAc on alginate can effectively help retard the release of BSA, and the higher degree of substitution is,the slower the release rate is. In addition, the complex membrane can also be adjusted to delay the release of BSA. As a whole, amphiphilic sodium alginate-vinyl acetate/CS microparticles could be developed for macromolecular drug delivery.
出处 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2019年第3期855-862,共8页 海洋湖沼学报(英文)
基金 Supported by the National Natural Science Foundation of China(No.21276033) the Open Foundation of the State Key Laboratory of Bioactive Seaweed Substances(Nos.SKL-BASS1711,SKL-BASS1707) the National Undergraduates Innovation and Entrepreneurship Training Program of China(No.201711258000001)
关键词 hydrophobic modifi cation sodium alginate-vinyl ACETATE AMPHIPHILIC Alg-g-PVAc/chitosan MICROCAPSULES drug delivery hydrophobic modification sodium alginate-vinyl acetate amphiphilic Alg-g-PVAc/chitosan microcapsules drug delivery
  • 相关文献

参考文献1

二级参考文献2

共引文献3

同被引文献15

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部