期刊文献+

判定对称强H-张量的迭代算法 被引量:1

An iterative method for determining symmetric strong H-tensors
下载PDF
导出
摘要 对称强H-张量的判定问题在图像处理、神经网络、高阶统计等领域中起着至关重要的作用,然而对称强-张量的判定问题存在诸多困难。给出一个判定对称强H-张量的迭代算法,并证明该算法是收敛的。进一步给出一个判定多元偶次齐次多项式正定性的算法。数值算例表明所给算法是有效的。 Identifying symmetric strong H-tensors plays an indispensable role in image processing,neural network and high-order statistics and so on. However,it is difficult to determine whether a given tensor is a symmetric strong H-tensor or not. In this paper,we propose an iterative algorithm for identifying symmetric strong H-tensors,and prove that the algorithm always converges. Moreover,we present an algorithm for determining the positive definiteness of multivariate even-order homogeneous polynomials. Some numerical examples are given to verify the effectiveness of the algorithms.
作者 刘蕊 陈震 刘奇龙 LIU Rui;CHEN Zhen;LIU Qilong(School of Mathematical Sciences, Guizhou Normal University, Guiyang, Guizhou 550025, China)
出处 《贵州师范大学学报(自然科学版)》 CAS 2019年第3期72-76,共5页 Journal of Guizhou Normal University:Natural Sciences
基金 国家自然科学基金(批准号:11671105) 贵州省教育厅自然科学研究项目(批准号:黔教合KY字[2015]352号) 贵州师范大学2017年博士科研启动项目(项目合同编号:GZNUD[2017]26号)
关键词 对称强H-张量 迭代算法 正定性 symmetric strong H-tensors iterative algorithm positive definiteness
  • 相关文献

参考文献4

二级参考文献21

  • 1Qi L. Eigenvalues of a real supersymmetric tensor [ J ]. Journal of Symbolic Computation ,2005,40 : 1302-1324. 被引量:1
  • 2Qi L Q, Sun W Y, Wang Y J. Numerical multilinear alge- bra and its applications [ J ]. Front Math China, 2007,2 (4) :501-526. 被引量:1
  • 3Ragnarsson S, Van Loan C F. Block tensor unfolding [ J ]. SIAM J Matrix Anal Apppl,2012,33( 1 ):149-169. 被引量:1
  • 4Silva V de, Lim L H. Tensor rank and the ill-posedness of the best low-rank approximation Problem [ J ]. SIAM J Ma- trix Anal App1,2008,30 : 1084-1127. 被引量:1
  • 5Eld'en L,Savas B. A Newton-Grassmann method for com- puting the best multilinear rank-( rl, r2, r3 ) approxima- tion of a tensor[ J ]. SIAM J Matrix Anal Appl, 2009,31 : 248-271. 被引量:1
  • 6Chang K C, Pearson K. Zhang Tan. Perron-Frobenius theorem for nonnegative tensors[J]. Commun Math Sci, 2008, 6:507-520. 被引量:1
  • 7Kaunana M R, Mondererb N S, Bermana A. Some properties of strong 7"/-tensors and general T/-tensors[J]. Linear Algebra Appl, 2015, 476: 42-55. 被引量:1
  • 8Ding Weiyang, Qi Liqun, Wei Yimin. M-tensors and nonsingular M-tensors[J]. Linear Algebra Appl, 2013, 439: 3264-3278. 被引量:1
  • 9Kolda T G, Mayo J R. ShiRed power method for computing tensor eigenpairs[J]. SIAM J Matrix Anal Appl, 2011, 32: 1095-1124. 被引量:1
  • 10Liu Yongjun, Zhou Guanglu, Ibrahim N F. An always convergent algorithm for the largest eigen- value of an irreducible nonnegative tensor[J]. J Comput Appl Math, 2010, 235: 286-292. 被引量:1

共引文献5

同被引文献4

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部