期刊文献+

粘性流基于特征线的四阶Runge-Kutta有限元法 被引量:2

A characteristic-based four order Runge-Kutta finite element method for incompressible viscous flow
下载PDF
导出
摘要 对于二维不可压缩粘性流,通过沿流线方向的坐标变换,推导了无对流项的二维N-S(Navier-Stokes)方程。采用四阶Runge-Kutta法对N-S方程进行时间离散,并沿流线进行Taylor展开,得到显式的时间离散格式,然后利用Galerkin法对其进行空间离散,得到了高精度的有限元算法。利用本文算法对方腔驱动流和圆柱绕流进行了数值计算,通过对时间步长、网格尺寸和流场区域的计算分析,进一步验证了本文算法相比经典CBS法在时间步长、收敛性、耗散性和计算精度方面更具有优势。 For two-dimensional incompressible viscous flow,the two -dime nsional Navier-Stokes(N-S)equation without convection term is derived by the coordinate transformation along the streamline direction.The explicit time discrete format is obtained via introducing the fourth order Runge -Kutta method and the Taylor expansion along the streamline direction,and then the space discretization format is carried out by the Galerkin method.Finally,a high precision finite element algorithm is obtained.This algorithm is applied to simulate flow in a cavity and flow around a circular cylinder.Through analyzing the effects of the different time step sizes,mesh sizes and flow field regions,the algorithm is further validated.Compared with the classical CBS method,it has more advantages in time step,characteristics of convergence and dissipation and accuracy.
作者 廖绍凯 张研 陈达 LIAO Shao-kai;ZHANG Yan;CHEN Da(School of Engineering & Architecture,Jiaxing University,Jiaxing 314001,China;School of Mechanics and Materials,Hohai University,Nanjing 211100,China;School of Harbour,Coastal and Offshore Engineering,Hohai University,Nanjing 211100,China)
出处 《计算力学学报》 EI CAS CSCD 北大核心 2019年第2期226-232,共7页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(51579088 51509081 51779087) 江苏省自然科学基金(20161507 20150037 20150811)资助项目
关键词 NAVIER-STOKES方程 四阶Runge-Kutta法 收敛性 耗散性 精度 Navier-Stokes equation four order Runge-Kutta method convergence dissipation accuracy
  • 相关文献

参考文献5

二级参考文献50

  • 1De Vries G, Norrie D H. The application of the finite-element technique to potential flow problems[J]. J Appl Mech, ASME Transactions, 1971,38 (4):798-802. 被引量:1
  • 2Brooks A N, Hughes T J R. Streamline upwind/ Petrov-Galerkin formulation for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equation[J]. Comp Meth Appl Mech Eng, 1982,32(1-3) : 199-259. 被引量:1
  • 3Donea J. A Taylor-Galerkin method for convective transport problems[J]. Int J Num Meth Eng , 1984, 20(1) : 101-109. 被引量:1
  • 4Zienkiewicz O C, Codina R. A general algorithm for compressible and incompressible flow, part I: the Split, Characteristic-Based scheme[J], Int J Num Meth Fluids, 1995,20(8-9) : 869-885. 被引量:1
  • 5Zienkiewicz O C, Codina R, Morgan K, et al. A general algorithm for compressible and incompressible flow, part II: tests on the explicit form[J]. Int J Num Meth Fluids, 1995,20(8-9) : 887-913. 被引量:1
  • 6Codina R, Vazquez M, Zienkiewicz O C. A general algorithm for compressible and incompressible flow, part III: the semi-implicit form[J]. Int J Num Meth Fluids, 1998,27(1-4) : 13-32. 被引量:1
  • 7Zienkiewicz O C, Taylor R L. The Finite Element Method Volume 3: Fluid Dynamics [M]. 5th Edition, Oxford, UK:Elsevier Butterworth-Heinemann, 2005. 被引量:1
  • 8Ghia U, Ghia K N, Shin C T. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method[J]. J Comput Phys, 1982,48(3) :387-411. 被引量:1
  • 9Sani, R L, Gresho, P M. Resume and remarks on the open boundary condition mini-symposium[J]. Int J Num Meth Fluids,1994,18(10):983-1008. 被引量:1
  • 10Gartling D K. A test problem for outflow boundary conditions, flow over a backward- facing step[J].Int J Num Meth Fluids,1990,11(7) :953-967. 被引量:1

共引文献6

同被引文献10

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部