期刊文献+

典型覆冰导线空气动力学特性数值和试验模拟 被引量:16

Numerical and Experimental Simulation of Aerodynamic Characteristics of Typical Iced Conductor
下载PDF
导出
摘要 输电线路覆冰舞动是由覆冰导线气动力引起的,因此了解覆冰导线的空气动力学特性是研究其舞动的关键因素。为此,结合覆冰导线空气动力学特性的研究现状,采用Spalart-Allmaras(SA)湍流计算模型和ADINA有限元软件对不同覆冰厚度的典型新月型、翼型、扇型和D型覆冰导线的升力系数、阻力系数及扭矩系数等空气动力学参数进行了系统研究。利用流场压力分布特性对空气动力学参数随攻角变化出现的尖峰突跳现象进行了分析。结果表明,数值模拟与试验结果具有较好的一致性,覆冰导线空气动力学参数仅与导线规格、覆冰厚度、覆冰类型和攻角有关,受测试风速影响较小。随着导线覆冰厚度的增加,覆冰导线空气动力参数曲线负斜率和变化率变大,即线路起舞阈值降低,发生舞动的可能性增大。 Ice-induced galloping of transmission line is caused by the aerodynamic force of iced conductor, so the aero- dynamic characteristics of iced conductor play a key role in researching the galloping. Therefore, on the basis of the current status of research on aerodynamic characteristics of iced conductor, using the Spalart-Allmaras (SA) turbulence model and the ADINA software, we systematically researched the aerodynamic parameters (lift coefficient, drag coeffi- cient, and torsion coefficient) of crescent-shaped, alary-shaped, fan-shaped, and D-shaped iced conductors with different ice thicknesses. Furthermore, we investigated the phenomenon that sudden peaks of aerodynamic parameters changed with the attack angle based on the pressure distribution of flow field. The results indicate that the numerical simulation well agrees with the experiments. The aerodynamic parameters are not determined by wind speed but determined by the conductor type, thickness and shape of accreted-ice, and attack angle. With the increase of ice thickness, the negative slope and change rate of the aerodynamic parameter curve also increase, i.e., as the wind threshold of galloping decreases, the possibility of transmission line galloping is enhanced.
出处 《高电压技术》 EI CAS CSCD 北大核心 2014年第2期427-433,共7页 High Voltage Engineering
基金 国家自然科学基金(50908218)~~
关键词 典型覆冰导线 绕流气动分析 SA湍流模型 数值模拟 风洞模拟试验 空气动力学特性 typical iced conductor cross-flow aerodynamic analysis SA turbulence model numerical simulation si-mulation tests in wind tunnel aerodynamic characteristics
  • 相关文献

参考文献17

  • 1王少华,蒋兴良,孙才新.输电线路导线舞动的国内外研究现状[J].高电压技术,2005,31(10):11-14. 被引量:152
  • 2Hartog J P D. Transmission line vibration due to sleet[J].American Institute of Electrical Engineers,1932,(04):1074-1076. 被引量:1
  • 3Nigol P G B. Torsional stability of bundle conductors[J].{H}IEEE Transactions on Power Apparatus and Systems,1977,(05):1666-1674. 被引量:1
  • 4Nigol P G B. Conductor galloping,part Ⅰ:Den Hartog mechanisim[J].{H}IEEE Transactions on Power Apparatus and Systems,1981,(02):699-707. 被引量:1
  • 5Nigol P G B. Conductor galloping,part Ⅱ:torsional mechanism[J].{H}IEEE Transactions on Power Apparatus and Systems,1981,(02):708-720. 被引量:1
  • 6Nigol P G B,Clarke G J. Conductor galloping and control based on torsional mechanism[A].[S.1.]:IEEE,1974.116. 被引量:1
  • 7Renadu K,Jean-Louis L. Benchmark cases for galloping with results obtained from wind thnnel facilities-validation of finite element model[J].{H}IEEE Transactions on Power Delivery,2000,(01):367-374. 被引量:1
  • 8Chadha J,Jaster W. Influence of turbulence on the galloping instability of iced conductors[J].{H}IEEE Transactions on Power Apparatus and Systems,1975,(05):1489-1499. 被引量:1
  • 9Desai Y M,Yu P,Shah A H. Perturbation-based finite element analysis of transmission line galloping[J].{H}Journal of Sound and Vibration,1996,(04):469-489. 被引量:1
  • 10Van Dyke P,Laneville A. Galloping of single conductor covered with a D-section on a high-voltage test line[J].{H}Journal of Wind Engineering and industrial Aerodynamics,2008,(6/7):1141-1151. 被引量:1

二级参考文献38

共引文献269

同被引文献152

引证文献16

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部