期刊文献+

基于改进萤火虫群优化的多示例学习算法

A Multi-Instance Learning Algorithm Based on and Revised Glowworm Swarm Optimization
下载PDF
导出
摘要 利用人工萤火虫群优化算法在求解极值上具有搜索精度高、收敛速度快的特点,求解多示例学习函数的最优值,提出基于改进萤火虫群优化的多示例学习算法(RGSOMIL),并应用到图像检索。在Corel图像集图像检索实验,RGSOMIL算法获得较好性能。 The reason for adopting the glowworm swarm optimization is that it has the characteristics of high precision and fast convergence in searching a global optimal solution, proposes a multi-instance algorithm based on revised glowworm swarm optimization(RGSOMIL). Experimental results on COREL image data sets show that the proposed approach has high retrieval performance.
作者 陈涛 董紫君 CHEN Tao;DONG Zi-jun(Educational Technology and Information Center, Shenzhen Polytechnic, Shenzhen 518055;Institute of Architectural and Environmental Engineering, Shenzhen Polytechnic, Shenzhen 518055)
出处 《现代计算机》 2019年第10期40-43,共4页 Modern Computer
基金 深圳市教育科学"十三五"规划重点项目(No.zdfz17009) 深圳职业技术学院科研项目(No.601622K37006) 深圳职业技术学院教育教学研究重点项目
关键词 人工智能 多示例学习 萤火虫群优化 图像检索 Artificial Intelligence Multi-Instance Learning Glowworm Swarm Optimization Image Retrieval
  • 相关文献

参考文献3

二级参考文献68

  • 1蔡自兴,李枚毅.多示例学习及其研究现状[J].控制与决策,2004,19(6):607-610. 被引量:12
  • 2王元.均匀设计──一种试验设计方法[J].科技导报,1994,12(5):20-21. 被引量:23
  • 3詹德川,周志华.基于流形学习的多示例回归算法[J].计算机学报,2006,29(11):1948-1955. 被引量:16
  • 4Manuel G, Miguel A V. An endmember-based distance for content based hyperspectral image retrieval[J]. Pattern Recognition, 2012, 45(9): 3472-3489. 被引量:1
  • 5Qin Jianzhao, Yung Nelson H C. Feature fusion within local region using localized maximum-margin learning for scene categorization[J]. Pattern Recognition, 2012, 45(4): 1671-1683. 被引量:1
  • 6Wu Fei, Tian Qi, Zhuang Yueting. Image annotation by input-output structural grouping sparsity[J]. IEEE Trans on Image Processing, 2012, 21(6): 3066-3079. 被引量:1
  • 7Yang Jun, Jiang Yu gang, Alexander G Hauptmann, et al. Evaluating bag-of-visual-words representations in scene classification[C]. Proc of the Int Workshop on Multimedia Information Retrieval. Bavaria, 2007: 197-206. 被引量:1
  • 8Zhang Dan, Wang Fei, Shi Zhenwei, et al. Interactive localized content based image retrieval with multiple- instance active learning[J]. Pattern Recognition, 2010, 43(3): 478-484. 被引量:1
  • 9Li D X, Fan J L, Wang D W, et al. Latent topic based multi- instance learning method for localized content-based image retrieval[J]. Computers & Mathematics with Applications, 2012, 64(4): 500-510. 被引量:1
  • 10Zhu Shunle, Tan Xiaoqiu. A novel automatic image annotation method based on multi-instance learning[J]. Procedia Engineering, 2011, 15(8): 3439-3444. 被引量:1

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部