期刊文献+

基于核密度估计的R-Vine Copula选择及其在故障检测中的应用? 被引量:7

R-Vine Copula selection based on kernel density estimation and its application in fault detection
下载PDF
导出
摘要 在化工过程监控领域,Vine Copula模型为描述高维复杂变量之间相依关系提供了一种新的思想,在不降维的基础上直接刻画变量之间复杂的相关关系。传统的Copula函数模型选择方法是基于赤池信息准则(Akaikeinformation criterion,AIC),但是在利用AIC准则时不仅要计算Copula的密度函数,而且边缘分布的拟合效果也直接影响了AIC的取值。本文提出了基于核密度估计的R-Vine Copula (kernel estimation-based R-vine Copula, KRVC)选择方法,并将其应用在化工过程监控领域。通过核密度选择原理得到R-Vine模型,然后利用高密度区域(HDR)与密度分位数表等理论,构建非高斯态广义局部概率指标(GLP)。该方法在TE(TennesseeEastman)过程中以及醋酸脱水过程中的应用验证了KRVC方法在过程监控中的良好性能。 Vine Copula model provides a new approach for describing the interdependence between high-dimensional complex variables during chemical process monitoring, which can directly characterize correlation without dimensional reduction. Traditional Copula function model selection methods are based on AIC (Akaile information criterion). However, the Copula density function needs to be calculated and the fitness of the edge distribution directly affects AIC values. Therefore, a kernel estimation-based R-Vine Copula (KRVC) selection method was proposed and applied in chemical process monitoring. The R-Vine model was obtained by selection criterion based on kernel density estimation. The generalized local probability (GLP) of the non-Gaussian state was constructed using the highest density region (HDR) theory and density quantile table. The monitoring results of the TE (Tennessee Eastman) process shows that the proposed KRVC approach achieves good performance in chemical process fault monitoring.
作者 周南 李绍军 ZHOU Nan;LI Shao-jun(Key Laboratory of Advanced Control and Optimization for Chemical Processes,East China University of Science and Technology,Ministry of Education,Shanghai 200237,China)
出处 《高校化学工程学报》 EI CAS CSCD 北大核心 2019年第2期443-452,共10页 Journal of Chemical Engineering of Chinese Universities
基金 国家自然科学基金(21676086) 上海市自然科学基金(14ZR1410500)
关键词 过程监控 核密度估计 非线性非高斯 R-VineCopula 广义贝叶斯推断概率指标 高密度区域 process monitoring kernel density estimation nonlinearity and non-Gaussian R-Vine Copula the generalized local probability highest density region
  • 相关文献

参考文献4

二级参考文献39

  • 1汪小勇,梁军,刘育明,王文庆.基于递推PLS的自适应软测量模型及其应用[J].浙江大学学报(工学版),2005,39(5):676-680. 被引量:17
  • 2许伟.软测量技术及其应用中应注意的问题[J].炼油技术与工程,2005,35(10):40-43. 被引量:3
  • 3徐欧官,苏宏业,金晓明,褚健.八碳芳烃临氢异构化反应动力学模型[J].高校化学工程学报,2007,21(3):429-435. 被引量:15
  • 4Joseph B, Brosilow C B. Inferential control of process: part I. Steady state analysis and design [J], AIChE Journal, 1978, 24(3): 485-492. 被引量:1
  • 5Brosilow C B, Tong M. Inferential control of process: part II. The structure and dynamics of inferential control system [J], AIChE Journal, 1978, 24(3): 492-500. 被引量:1
  • 6Joseph B, Brosilow C B. Inferential control of process: part III. Construction of optimal and suboptimal dynamic estimators [J]. AIChE Journal, 1978, 24(3): 500-509. 被引量:1
  • 7Li Y Cx, Chang X D, Zeng Z H. Kinetics study of the isomerization of xylene on HZSM-5. 1. Kinetics model and reaction mechanism [J]. Ind Eng Chem Res, 1992, 31(1): 187-192. 被引量:1
  • 8Iliyas A, Al-Khattaf S. Xylene isomerization over USY zeolite in a riser simulator: a comprehensive kinetic model [J]. Ind Eng Chem Res, 2004, 43(6): 1349-1358. 被引量:1
  • 9WUDeng-xi(伍登熙) LINZheng-xian(林正仙).Kinetic modeling of hydroisomerization of Cs-aromatics ( I ) modeling and estimation of relative rate constants by the Wei-Prater method(八碳芳烃临氢异构化反应系统动力学模型(I)用特征向量法研究选择性动力学).化工学报,1985,3(3):257-267. 被引量:1
  • 10Zhang Jie. Inferential feedback control of distillation composition based on PCR and PLS models [A]. Proceedings of the 2001 American Control Conference [C], Arlington, VA, USA: 2001, 2: 1196-1201. 被引量:1

共引文献187

同被引文献36

引证文献7

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部