期刊文献+

图谱理论在文本图像二值化算法中的应用 被引量:4

Application of graph spectral theory to text image binarization processing
下载PDF
导出
摘要 常用的阈值二值化方法不能很有效地分割出文本图像,而利用图谱理论的思想可以清晰有效地对文本图像进行二值化分割。针对传统的图谱理论分割图像算法计算量大、空间复杂度高的不足,提出了利用直方图灰度等级代替像素级,在此基础上近似计算了权函数的参数,算法的计算量和复杂度都有所降低。实验结果表明,该方法大大降低了计算的复杂性,在速度上优于传统的图谱理论分割方法,质量上优于常用的二值化分割方法。 The traditional binarization thresholding methods cannot segment the text image effectively from the whole image, while the improved method based on graph spectral theory can segment the text image effectively and clearly. Concerning the traditional algorithms based on the graph spectral theory has high computational and space complexity, the authors used gray levels of an image instead of pixels of an image. On this basis, the parameters of weight function was calculated approximately. The experimental resuhs show that this method reduces the computational complexity, and has superior performance on speed compared to the traditional graph spectral methods, and better quality compared to the common binarization algorithms.
出处 《计算机应用》 CSCD 北大核心 2010年第10期2802-2804,共3页 journal of Computer Applications
关键词 图谱理论 二值化 文本图像 直方图 边权值 graph spectral theory binarization text image histogram edge weight
  • 相关文献

参考文献9

  • 1TSAI T-H, CHEN Y-C, FANG C-L. A comprehensive motion videotext detection localization and extraction method [ C]//2006 International Conference on Communications, Circuits and Systems Proceedings. Washington, DC: IEEE, 2007:515-519. 被引量:1
  • 2PAN W, BUI T, SUEN C. Text segmentation from complex background using sparse representations [ C]// Proceedings of the Ninth International Conference on Document Analysis and Recognition. Washington, DC: IEEE Computer Society, 2007:412-416. 被引量:1
  • 3LIENGART R, WERNICKE A. Localizing and segmenting text in images and videos [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2002, 12(4) : 256 -268. 被引量:1
  • 4WU V, MANMATHA R, RISEMAN E M. Text finder: An automatic system to detect and recognize text in images [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21 (11): 1224 - 1229. 被引量:1
  • 5张涛,洪文学.基于图谱理论的纹理图像分析[J].光学技术,2009,35(6):825-827. 被引量:1
  • 6陶文兵,金海.一种新的基于图谱理论的图像阈值分割方法[J].计算机学报,2007,30(1):110-119. 被引量:56
  • 7WU Z Y, LEAHY R. An optimal graph theoretic approach to data clustering: Theory and its application to image segmentation [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(11) : 110 - 113. 被引量:1
  • 8SHI J, MALIK J. Normalized cuts and image segmentation [ J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2000, 22(8) : 888 -905. 被引量:1
  • 9吴锐,黄剑华,唐降龙,刘家锋.基于灰度直方图和谱聚类的文本图像二值化方法[J].电子与信息学报,2009,31(10):2460-2464. 被引量:28

二级参考文献35

共引文献79

同被引文献22

  • 1张引.基于空间分布的最大类间方差牌照图像二值化算法[J].浙江大学学报(工学版),2001,35(2):219-219. 被引量:39
  • 2杨杰,付忠良,阮波.照度不均匀图像的快速自适应灰度修正[J].计算机应用,2005,25(3):598-600. 被引量:14
  • 3Mori S, Suen C Y, Yamamoto K. Historical review of OCR re- search and development [ J ]. IEEE Trans on PAMI, 1996,18 ( 7 ) : 690 -706. 被引量:1
  • 4Ntogas N, Veintzas D. A binarization algorithm for historical ma- nuscripts [ C ]//Proceedings of the 12nd WSEAS International Conference on Communications ,2008:41 -51. 被引量:1
  • 5Sezgin M, Sankur B. Survey over image thresholding techniques and quantitative performance evaluation[ J]. Journal of Electronic Imaging,2004,13 : 146. 被引量:1
  • 6Bernsen J. Dynamic thresholding of gray-level images [ C ]// Proc of IEEE the 8th Int'l Conf on Part Recognition, Paris, France, 1986 : 1251 -1255. 被引量:1
  • 7Yasnoff W A,Mui J K,Bacus J W. Error measures for scene seg- mentation[ J ]. Pattern Recognition, 1977,9 (4) :217 -231. 被引量:1
  • 8RomOn-Rold6n R, G6mez-Lopera J F, Atae-Allah C, et al. A measure of quality for evaluating methods of segmentation and edge detection [ J ]. Pattern Recognition,2001,34 ( 5 ) : 969 -980. 被引量:1
  • 9B. Gatos,I. Pratikakis,S.J. Perantonis.Adaptive degraded document image binarization[J].Pattern Recognition.2005(3) 被引量:1
  • 10叶芗芸,戚飞虎,吴健渊,许磊.文本图像的快速二值化方法[J].红外与毫米波学报,1997,16(5):344-356. 被引量:34

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部