期刊文献+

基于加权机制概念漂移的数据流GNB分类检测 被引量:5

GNB Classification and Detection of Data Streams Based on Weighted Mechanism Concept Drift
下载PDF
导出
摘要 为提高数据流分类检测精度和检测效率,提出一种基于加权机制概念漂移策略的数据流高斯朴素贝叶斯分类检测算法。首先,对所提算法框架进行设计,利用输入数据流直接建立信息表,并构建基于信息表的高斯朴素贝叶斯分类器;其次,利用"Kappa统计"方法建立基于加权机制的概念漂移检测方法,根据输入数据波动性,分别采取线性函数和贝叶斯(非线性)函数进行检测,并利用专家点删除和信息表来处理经常性的概念漂移,实现漂移检测精度和效率的提升;最后,通过仿真实验,显示所提算法在SEA测试集、Hyperplane数据集和SQD测试集上的分类精度分别比选取的对比算法提高分类精度10.3%、16.8%和20.5%以上,验证了所用分类检测算法的有效性。 In order to improve the accuracy and efficiency of data flow classification detection, a new Gauss naive Bayes classification method based on weighted mechanism concept drift detection is proposed. Firstly,the proposed algorithm framework is designed, and the input data stream is used to establish the information table directly, and the Gauss naive Bayes classifier based on the information table is also constructed;Secondly,the Kappa statistical method is used to establish the concept drift detection method. According to the input data fluctuation, linear function and Bias function(nonlinear) are taken to detect the concept drift, and expert point deletion and information table are used to deal with the recurrent concept drift, to improve the drift detection accuracy and efficiency;Finally, simulation experiments show that the classification accuracy on the SEA test set, Hyperplane data set and SQD data set is 10.3 %, 16.8 % and 20.5 % higher than that of the contrast algorithm, which verifies the effectiveness of the classification algorithm.
作者 刘红庆 舒底清 刘燕 黄雁 LIU Hong-qing;SHU Di-qing;LIU Yan;HUANG Yan(College of Logistics Information,Hunan Vocational College of Modem Logistics,Changsha 410131,China;Institute of Vocational Education,Hunan Provincial Research Institute of Education,Changsha 410005,China;College of Economics and Trade Management,Hunan Mechanical & Electrical Polytechnic,Changsha 410151,China)
出处 《控制工程》 CSCD 北大核心 2019年第3期589-595,共7页 Control Engineering of China
基金 湖南省职业院校教育教学改革研究项目(ZJGB2016110)
关键词 加权机制 概念漂移 数据流 高斯 朴素贝叶斯 Weighted mechanism concept drift data flow Gauss naive Bayes
  • 相关文献

参考文献6

二级参考文献67

  • 1Alves A,Arkin A,Askary S. Web services business process ex- ecution language version 2.0[ EB/OL]. http://docs, oasis- open. org/wsbpel/20/OS/wsbpel-v2.0-OS, html. 2007-4-11. 被引量:1
  • 2Diaz G,Pardo J J, et al.Design and verification of web services COlllpOSitiOflS with tired auKa'nata [ J ]. Electro/lie Notes ill Theroretical Computer Science, 2006,157 ( 2 ) : 19 - 34. 被引量:1
  • 3Cambronero M E,Diaz G,Valero V,et al.Validation and veri- fication of web services choreographies by using limed automa- ta[ J]. The Journal of Logic and Algebraic Programming,2011, 80(1) :25 - 49. 被引量:1
  • 4Salaum G,Bordeaux L, Schaeff M. Describing and reasoing on web services using process algebra[ A]. Proceeding of IEEE In- ternational Conference on Web Servce [ C ]. Washinton: IEEE Computer Society,2004.43 - 51. 被引量:1
  • 5Peng Y, Ye L, Zheng Z, et al. Automatic service composition verification based on H-calculus [ A ]. Proceeding of Interna- tional Conference on E-Business and Information System Secu- rity[ C]. Wuhan: IEEE, 2009.1 -4. 被引量:1
  • 6Hinz S, Schrnidt K, Stah C. Transforming BPEL to pelri-nets [ J ]. Lecuae Notes in Computer Science, 2005, 3649- 220 - 235. 被引量:1
  • 7Song W,Ma X. Ye,C,Dou W, Lu J. Timed modeling and ver- ification of BPEL processed using timed Petri nets [ A ]. Pro- ceeding of the 9th International Conference on Quality Software [C]. Cheju: IEEE,2009.92 - 97. 被引量:1
  • 8Package org. apache, ode. bpel. compiler, born [ CP/OL ]. http://www, jarvana, com/javana/view/or/apache/ode- bpel- compiler/1.3.4/ode- bpel-compiler- 1.3.4-javadoc. jar ! /org/ apache/od. 被引量:1
  • 9Amighi A.Flow Graph Extraction for Modular Verification of Java Progxams[ D]. Stockholm. KTH Royal Institute of Tech- nology ,2011. 被引量:1
  • 10Kazhamiakin R, Pistore M. Static verification of control and data in web service compositions[ A]. Proceeding of IEEE In- ternational Conference on Web Services ( ICWS' 06 ) [ C ]. Washington: IEEE Computer Society,2006.83 - 90. 被引量:1

共引文献47

同被引文献35

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部