期刊文献+

概念漂移下的系统日志在线异常检测模型 被引量:1

ONLINE ANOMALY DETECTION MODEL OF SYSTEM LOG UNDER CONCEPT DRIFT
下载PDF
导出
摘要 针对在线系统的动态日志中存在的概念漂移问题,提出一种结合置信度的系统日志在线异常检测模型(COP)。按照时间顺序模拟Hadoop分布式文件系统日志,使用滑动窗口以日志块的方式接收日志并进行预处理;获取一定时间内的日志作为预先知识并计算p值;使用一致性预测得分计算置信度,根据预先知识中获得的显著性水平过滤异常日志;建立当前与之前日志数据之间的联系,动态更新校准集并输出一个可信的检测结果。实验结果表明,COP与用于模拟增量学习的重训练异常检测模型相比,得到的在线检测结果和时间性能更优。 Aimed at the problem of concept drift in the dynamic log of the online system,a system log online anomaly detection model(COP) combined with confidence is proposed.We simulated the Hadoop distributed file system logs in chronological order and used the sliding window to receive the logs in log blocks and to perform preprocessing.We obtained the log within a certain period of time as advance knowledge and calculated the p-value.We used the consistency prediction score to calculate the confidence,and filtered the abnormal log based on the significance level obtained from the prior knowledge.We established the connection between the current and previous log data,dynamically updated the calibration set and output a credible detection result.Experimental results show that,compared with the retrained anomaly detection model used to simulate incremental learning,the online detection results and time performance obtained by COP are better.
作者 吕宗平 梁婷婷 顾兆军 刘春波 王双 王志 LüZongping;Liang Tingting;Gu Zhaojun;Liu Chunbo;Wang Shuang;Wang Zhi(Information Security Evaluation Center,Civil Aviation University of China,Tianjin 300300,China;Institute of Computer Science and Technology,Civil Aviation University of China,Tianjin 300300,China;College of Artificial Intelligence,Nankai University,Tianjin 300071,China)
出处 《计算机应用与软件》 北大核心 2023年第10期314-321,共8页 Computer Applications and Software
基金 国家自然科学基金项目(61601467) 民航安全能力建设基金项目(PESA2020100) 中央高校基本科研业务费项目中国民航大学专项资助(3122018D030)。
关键词 概念漂移 在线学习 一致性预测 异常检测 滑动窗口 置信度 Concept-drift Online learning Conformal prediction Sliding window Abnormal detection Confidence level
  • 相关文献

参考文献9

二级参考文献55

  • 1姜传菊.网络日志分析在网络安全中的作用[J].现代图书情报技术,2004(12):58-60. 被引量:19
  • 2Open Networking Fundation. SDN [EB/OL]. [2013-08-03]. https://www.opennetworking.org. 被引量:1
  • 3Tootoonchian A, Ghobadi M, Ganjali Y. OpenTM: Traffic Matrix Estimator for OpenFlow Networks [C]//Proceedings of the 11th International Conference on Passive and Active Measurement (PAM). Heidelberg: Springer, 2010: 201-210. 被引量:1
  • 4Jose L, Yu M, Rexford J. Online Measurement of Large Traffic Aggregates on Commodity Switches [C]//Proceedings of the 11th USENIX Conference on Hot Topics in Management of Internet, Cloud, and Enterprise Networks and Services (Hot-ICE). Berkeley: USENIX Association, 2011: 13. 被引量:1
  • 5Braga R, Mota E, Passito A. Lightweight DDoS Flooding Attack Detection Using NOX/OpenFlow [C]//IEEE 35th Conference on Local Computer Networks. Piscataway: IEEE, 2010: 408-415. 被引量:1
  • 6Mehdi S A, Khalid J, Khayam S A. Revisiting Traffic Anomaly Detection Using Software Defined Networking [C]//Proceedings of the 14th International Conference on Recent Advances in Intrusion Detection. Heidelberg: Springer, 2011: 161-180. 被引量:1
  • 7Mckeown N, Anderson T, Balakrishnan H, et al. OpenFlow: Enabling Innovation in Campus Networks [J]. ACM SIGCOMM Computer Communication Review, 2008, 38(2): 69-74. 被引量:1
  • 8Nychis G, Sekar V, Andersen D G, et al. An Empirical Evaluation of Entropy-based Traffic Anomaly Detection [C]//Proceedings of the 8th ACM SIGCOMM Conference on Internet Measurement. New York: ACM, 2008: 151-156. 被引量:1
  • 9Lakhina A, Crovella M, Diot C. Diagnosing Network-wide Traffic Anomalies [C]//Proceedings of the ACM SIGCOMM. New York: ACM, 2004: 219-230. 被引量:1
  • 10Lakhina A, Crovella M, Diot C. Mining Anomalies Using Traffic Feature Distributions [C]//Proceedings of the ACM SIGCOMM. New York: ACM, 2005: 134-145. 被引量:1

共引文献78

同被引文献18

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部