期刊文献+

基于尺度不变Harris特征的准稠密匹配算法 被引量:3

Quasi-dense matching based on scale invariant Harris feature
下载PDF
导出
摘要 准稠密匹配是多视图三维重建的重要技术,其性能对重建结果至关重要。针对常用的SIFT算法提取的种子点进行准稠密匹配正确率较低、重建效果不佳的问题,提出了一种基于尺度不变Harris角点特征的准稠密匹配算法。该算法在图像多尺度空间构造尺度不变Harris特征,并采用余弦距离测度对不同视图进行双向匹配。根据稀疏匹配获取种子点,采用最优最先匹配扩散策略进行准稠密扩散,采用局部非极大值抑制策略对匹配结果进行重采样。实验表明,算法提取的种子点既能够体现场景结构信息,又具有尺度不变特性,用于准稠密匹配,能够提高匹配的效果和精度,是一种有效的用于三维重建的准稠密匹配算法。 Quasi-dense matching is widely used in multi-view 3D reconstruction,and it is important for reconstruction results.Aiming at the quasi-dense matches diffused by the seed points extracted from SIFT algorithm were less accurate,this paper proposed a quasi-dense matching algorithm based on scale invariant Harris corners.Firstly,this algorithm structured the scale invariant Harris features in multi-scale space,and bidirectionally matched the feature sets between different views by cosine distance similarity measure.Then it applied the seeds selected from the initial matches in quasi-dense matching algorithms by best and first propagation strategy.Finally,it applied a local non-maximum suppression strategy to resampling the quasi-dense matching results.Experiments show that the seeds extracted by the proposed algorithm can not only reflect the scene structure information,but also have scale invariant characteristics.And for quasi-dense diffusion,the matching effect and accuracy can be improved,and it is an effective quasi-dense matching algorithm for 3D reconstruction.
作者 孙会超 惠斌 常铮 Sun Huichao;Hui Bin;Chang Zheng(Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110016,China;University of Chinese Academy of Sciences,Beijing 100049,China;Key Laboratory of Opto-Electronic Information Processing,Chinese Academy of Sciences,Shenyang 110016,China;Key Laboratory of Image Understanding&Computer Vision,Shenyang 110016,China)
出处 《计算机应用研究》 CSCD 北大核心 2019年第4期1252-1255,共4页 Application Research of Computers
关键词 尺度不变Harris特征 准稠密匹配 局部非极大值抑制 三维重建 scale-invariant Harris feature quasi-dense matching local non-maximal suppression 3D reconstruction
  • 相关文献

参考文献9

二级参考文献126

  • 1郭龙源,夏永泉,杨静宇.基于视差梯度的快速区域匹配方法[J].计算机科学,2007,34(4):239-240. 被引量:10
  • 2周大伟,耿金玲,郑继明.一种基于人眼视觉特性的ROI渐进图像传输算法[J].计算机应用,2007,27(7):1654-1656. 被引量:7
  • 3SCHMID C, MOHR R, BAUCKHAGE C. Evaluation of interest point detectors [J]. International Journal of Computer Vision, 2000, 37(2): 151- 172. 被引量:1
  • 4HARRIS C, STEPHENS M. A combined corner and edge detector [C]// Alvey Vision Conference. Manchester: [s. n. ], 1988:147 - 151. 被引量:1
  • 5LINDEBERG T. Edge detection and ridge detection with automatic scale selection [J]. International Journal of Computer Vision, 1998, 30(2) : 117 - 156. 被引量:1
  • 6LINDEBERG T. Feature detection with automatic scale selection [J]. International Journal of Computer Vision, 1998, 30(2): 79-116. 被引量:1
  • 7MIKOLAJCZYK K, SCHMID C. Indexing based on scale invariant interest points [C]// Proceedings of the 8th IEEE International Conference of Computer Vision. Vancouver: IEEE, 2001: 525- 531. 被引量:1
  • 8MIKOLAJCZYK K, SCHMID C. Scale & affine invariant interest point detectors [J].International Journal of Computer Vision, 2004, 60(1) : 63 - 86. 被引量:1
  • 9LOWE D. Object recognition from local scale-invariant features [C]// Proceedings of the 7th IEEE International Conference on Computer Vision. Corfu: IEEE, 1999: 1150 - 1157. 被引量:1
  • 10LOWE D. Distinctive image features from scale-invariant keypoints [J].International Journal of Computer Vision, 2004, 60(2) : 91 - 110. 被引量:1

共引文献124

同被引文献34

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部