期刊文献+

基于双重Hash的图像相似检索算法研究 被引量:3

Research on the Image Similarity Retrieval Algorithm Based on Double Hash
下载PDF
导出
摘要 针对DHash或PHash等图像相似检索算法中存在的只依靠一个阈值进行相似判定而造成的不严谨情况,提出了基于双重Hash的图像相似检索算法。算法优先使用耗时较短的DHash进行图像相似判定,采用"阈值+存在误差"的方法进而决定是否需要使用准确度较高的PHash再次进行图像相似判定。实验结果表明,本算法在图像相似检索中的效率与DHash算法相差无几,但较传统PHash或DHash算法能够更准确、完整地检索所有相似图像,具体检索完整性为"本算法> PHash算法> DHash算法"。 Aiming at the imprecise situation caused by the similarity judgment based on only one threshold in the image similarity retrieval algorithm such as DHash or PHash, an image similarity retrieval algorithm based on double Hash is proposed. The algorithm preferentially uses DHash, which takes less time to perform image similarity judgment, and uses the method of “threshold + error” to determine whether it is necessary to use the more accurate PHash to perform image similarity judgment again. The experimental results show that the efficiency of the algorithm in image similarity retrieval is similar to that of DHash algorithm, but it can retrieve all similar images more accurately and completely than the traditional PHash or DHash algorithm. The specific retrieval integrity is "this algorithm > PHash algorithm > DHash algorithm".
作者 尹玉梅 彭艺 祁俊辉 Yin Yumei;Peng Yi;Qi Junhui(Kunming University of Science and Technology, Faculty of Information Engineering and Automation, Kunming 650500, China)
出处 《信息通信技术》 2019年第1期33-38,共6页 Information and communications Technologies
基金 国家地区自然科学基金NO.61761025
关键词 双重Hash 存在误差 图像相似检索 Double Hash Existence Error Image Similarity Retrieval
  • 相关文献

参考文献9

二级参考文献62

  • 1J Fridrich, M Goljan. Robust hash functions for digital water- marking[ A]. Proceedings. International Conference on Information Technology: Coding and Computing [ C]. Las Vegas:IEEE,2000. 178 - 183. 被引量:1
  • 2V Monga, B L Evans. Robust perceptual image hashing using feature points [ A ]. Proceedings of IEEE International Conference on Image Processing (ICIP) [ C ]. Singapore: IEEE, 2004. 1 : 677 - 680. 被引量:1
  • 3S S Kozat, R Venkatesan, M K Mihcak. Robust perceptual image hashing via matrix invariants [ A ]. Proceedings of International Conference on Image Processing (ICIP) [ C ]. Singapore: IEEE,, 2004.5 : 3443 - 3446. 被引量:1
  • 4R Venkatesan, S M Koon, et al. Robust image hashing. Proceedings of IEEE International Conference of Image Processing (ICIP) [ C ]. Vancouver: IEEE, 2000.3 : 664 - 666. 被引量:1
  • 5A De Angelis,A Moschitta,F Russo,P Carbone. Image quality assessment: an overview and some metrological considerations [ A]. International Workshop on Advanced Methods for Uncertainty Estimation in Measurement[ C ]. Trento: IEEE, 2007.47 - 52. 被引量:1
  • 6H R Sheikh, A C Bovik. Image information and visual quality [ J ]. IEEE Transactions on Image Processing, 2006,15 (2) : 430 -444. 被引量:1
  • 7Andrew B Watson. DCT quantization matrices visually optimized for individual images[A]. The Intemational Society for Optical Engineering [C]. California: SPIE, 1993.1913 : 202 - 216. 被引量:1
  • 8Wang Zhou, A C Bovik, H R Sheikh, et al. Image quality assessment: from error visibility to structural similarity [ J ]. IEEE. Transactions on Image Processing,2004,13(4) :600- 612. 被引量:1
  • 9Allan G Weber. The USC-SIPI Image Database: Version 5 [ DB/OL]. http://sipi, usc. edu/database. 被引量:1
  • 10[1]VANSTONE S A,MENEZES A J,OORSCHOT P C.1996 Handbook of Applied Cryptography[M].New York:CRC Press,1996. 被引量:1

共引文献76

同被引文献9

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部