期刊文献+

融合HVS计算模型的视频感知哈希算法研究 被引量:7

Video perceptual hashing fuse computational model of human visual system
原文传递
导出
摘要 感知哈希(perceptual hashing)是多媒体数据集到摘要集的单向映射,为多媒体数字内容的标识、检索、认证等应用提供了安全可靠的技术支撑。目前关于感知哈希算法的研究主要集中在不断提高其鲁棒性和安全性上,忽略了人的主要视觉感知特性,导致了算法的过鲁棒性问题。将人类视觉系统可计算模型融入视频感知哈希算法框架中,用模拟人眼感受野特征提取特性的Cortex变换进行通道分解,并使用时-空域对比度敏感函数、眼球移动函数、亮度适应性调整函数、子带内和子带间对比度掩蔽函数综合计算最小视觉差提取感知特征。在保证较好鲁棒性的前提下,算法中使用扩散分块的机制提高安全性,通过与已有算法之间的比较,结果表明,本文提出的算法在鲁棒性和安全性方面取得了有效折衷,同时也体现了主观感知与客观评测上的一致性。 Perceptual hashing is a function of mapping from multimedia digital presentations to a perceptual hash value, which provides a secure and reliable technical support in fields such as identification, retrieval, and certification of multimedia content. The current algorithms fail in taking sufficient human visual perceptual factors into consideration. With the improvement of their over-robustness, most of the algorithms can' t assure their securities. In this paper, a novel perceptual hashing algorithm is proposed. In order to simulate multi-channel features of the human visual system, a cortex transformation is combined with a computational model of the human visual system, which is designed by jointly considering four visual perceptual factors during the feature extraction stage, such as spatio-temporal contrast sensitivity function, eye movement, lightness adaptation, and intra-band and inter-band masking. Additionally, a diffusion mechanism is introduced into the preprocessing stage. The results suggest our proposed method could achieve better trade-offs between robust and secure resilient to various content-preserving manipulations, and also reflects the uniformity between subjective perception and objective evaluation
出处 《中国图象图形学报》 CSCD 北大核心 2011年第10期1883-1889,共7页 Journal of Image and Graphics
基金 广东省自然科学基金自由申请项目(9151806001000022) 深圳市基础研究项目(JC200903120115A 0015533011100512097) 深圳市公共技术服务平台项目(0015533054100524069) 深圳市科技研发资金重大产业技术公共计划项目(0015533021101018033)
关键词 人类视觉系统(HVS) 视频感知哈希 Cortex变换 扩散分块 最小视觉差 human visual system (HVS) video perceptual hashing Cortex transform diffusion blocking just noticeable difference
  • 相关文献

参考文献11

  • 1牛夏牧,焦玉华.感知哈希综述[J].电子学报,2008,36(7):1405-1411. 被引量:97
  • 2张慧,张海滨,李琼,牛夏牧.基于人类视觉系统的图像感知哈希算法[J].电子学报,2008,36(B12):30-34. 被引量:26
  • 3Oestveen J, Kalker T, Haitsma J. Visual Hashing of digital video: applications and techniques [ J ]. SPIE Applications of Digital Image Processing XXIV, SPIE Press, 2001,4472: 121-131. 被引量:1
  • 4Zhou X, Schmucker M, Brown C L. Perceptual Hashing of video content based on differential block similarity [ C ]// Proceedings of 2005 International Conference on Computational Intel-ligence and Security. Xi'an: Xidian University Press, 2005: 3802. 被引量:1
  • 5Venkatesan R, Koon S M, Jakubowski M H. Robust image Hashing [ C ]//Proceedings of IEEE International Conference on Image Processing (ICIP). Vancouver: IEEE Press,2000, (3) : 664-666. 被引量:1
  • 6Coskun B, Sankur B, Memon N. Spatio-temporal transform based video Hashing [ J ]. IEEE Transactions on Multimedia, 2006,8(6) :1190-1208. 被引量:1
  • 7Watson A B. The Cortex transform: rapid computation of simulated neural images [ J ]. Computer Vision Graphics and Image Processing, 1986, 39 ( 1 ) : 311-327. 被引量:1
  • 8Kelly D H. Motion and vision: II. stabilized spatio-temporal threshold surface[J]. Journal of the Optical Society of America A, 1979, 69(3) :1340-1349. 被引量:1
  • 9Daly S. Engineering observations from spatiovelocity and spatiotemporal visual models E C ]// Processing SHE. San Jose, CA, USA: SPIE Press, 1998:180-191. 被引量:1
  • 10Wei Zhenyu, King N N. Spatio-temporal just noticeable distortions profile for grey scale image/video in DCT domain[ J]. IEEE Transactions on Circuits and Systems for Video Technology, 2009, 19(3) :337-346. 被引量:1

二级参考文献37

  • 1J Fridrich, M Goljan. Robust hash functions for digital water- marking[ A]. Proceedings. International Conference on Information Technology: Coding and Computing [ C]. Las Vegas:IEEE,2000. 178 - 183. 被引量:1
  • 2V Monga, B L Evans. Robust perceptual image hashing using feature points [ A ]. Proceedings of IEEE International Conference on Image Processing (ICIP) [ C ]. Singapore: IEEE, 2004. 1 : 677 - 680. 被引量:1
  • 3S S Kozat, R Venkatesan, M K Mihcak. Robust perceptual image hashing via matrix invariants [ A ]. Proceedings of International Conference on Image Processing (ICIP) [ C ]. Singapore: IEEE,, 2004.5 : 3443 - 3446. 被引量:1
  • 4R Venkatesan, S M Koon, et al. Robust image hashing. Proceedings of IEEE International Conference of Image Processing (ICIP) [ C ]. Vancouver: IEEE, 2000.3 : 664 - 666. 被引量:1
  • 5A De Angelis,A Moschitta,F Russo,P Carbone. Image quality assessment: an overview and some metrological considerations [ A]. International Workshop on Advanced Methods for Uncertainty Estimation in Measurement[ C ]. Trento: IEEE, 2007.47 - 52. 被引量:1
  • 6H R Sheikh, A C Bovik. Image information and visual quality [ J ]. IEEE Transactions on Image Processing, 2006,15 (2) : 430 -444. 被引量:1
  • 7Andrew B Watson. DCT quantization matrices visually optimized for individual images[A]. The Intemational Society for Optical Engineering [C]. California: SPIE, 1993.1913 : 202 - 216. 被引量:1
  • 8Wang Zhou, A C Bovik, H R Sheikh, et al. Image quality assessment: from error visibility to structural similarity [ J ]. IEEE. Transactions on Image Processing,2004,13(4) :600- 612. 被引量:1
  • 9Allan G Weber. The USC-SIPI Image Database: Version 5 [ DB/OL]. http://sipi, usc. edu/database. 被引量:1
  • 10王甦 汪安圣.认知心理学[M].北京:北京大学出版社,1992.. 被引量:121

共引文献113

同被引文献39

引证文献7

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部