期刊文献+

基于RPN与B- CNN的细粒度图像分类算法研究 被引量:16

FINE-GRANTED IMAGE CALSSIFICATION ALGORITHM BASED ON RPN AND B-CNN
下载PDF
导出
摘要 随着大数据和硬件的快速发展,细粒度分类任务应运而生,其目的是对粗粒度的大类别进行子类分类。为利用类间细微差异,提出基于RPN(Region Proposal Network)与B-CNN(Bilinear CNN)的细粒度图像分类算法。利用OHEM(Online Hard Example Mine)筛选出对识别结果影响大的图像,防止过拟合;将筛选后的图像输入到由soft-nms(Soft Non Maximum Suppression)改进的RPN网络中,得到对象级标注的图像,同时减少假阴性概率;将带有对象级标注信息的图像输入到改进后的B-CNN中,改进后的B-CNN可以融合不同层特征并加强空间联系。实验结果表明,在CUB200-2011和Standford Dogs数据集平均识别精度分别达到85.50%和90.10%。 With the rapid development of big data and hardware, fine-grained classification has emerged. Its purpose is to classify the coarse-granted categories into subclasses. In order to use the subtle differences between similarities, we proposed a fine-granted classification algorithm based on RPN and B-CNN. The online hard example mine(OHEM) algorithm was used to screen out the images which had a great impact on the recognition results to prevent the over-fitting. Then, the selected image was input into the RPN network improved by soft non maximum suppression(soft-nms). The false negative probability was reduced, and the image with object-level annotation was obtained. The image with object-level annotation was input the improved B-CNN. The improved B-CNN could fuse features of different layers and enhanced their spatial connection. The experimental results demonstrate that the average recognition accuracy of CUB200-2011 and Stanford Dogs datasets is 85.50% and 90.10%.
作者 赵浩如 张永 刘国柱 Zhao Haoru;Zhang Yong;Liu Guozhu(College of Information Science and Technology, Qingdao University of Science and Technology, Qingdao 266000, Shandong, China)
出处 《计算机应用与软件》 北大核心 2019年第3期210-213,264,共5页 Computer Applications and Software
基金 国家自然科学基金项目(61472196 61672305 61702295) 山东省自然科学基金项目(ZR2014FM015)
关键词 细粒度分类 类间差异 双向卷积网络 非极大值抑制 特征融合 Fine-granted classification Interclass difference B-CNN Non-maximum suppression Feature fused
  • 相关文献

参考文献4

二级参考文献10

共引文献151

同被引文献97

引证文献16

二级引证文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部