期刊文献+

基于移动设备的听障人特定语音识别训练系统 被引量:2

A special speech recognition training system for hearing impaired people based on mobile devices
下载PDF
导出
摘要 我国国内听障人士目前达到7 200万,他们普遍存在言语沟通障碍,大多只能依赖特殊教育学校的手语、助听器以及人工耳蜗实现和正常人沟通交流.结合听障者的自身特点设计了特定的语音识别系统,听障者通过点击界面的图标实现发音,用户根据声音信息实现模仿,系统根据检测到的数据进行评测,给出听障者的训练结果,实现了沟通和康复的有机结合.在此系统的基础上,为了提高语音输入的高效性,增加了基于语义的sem算法的文本预测,该算法模型对句子中出现的所有词进行了构建.在特定的语音识别的基础上完成了整体的构架设计,实现了训练模块和语音模块之间的交互. At present,there are 72 million hearing-impaired people in China,and they generally have speech communication problems.They cannot communicate with normal people in speech communication,and most of them can only rely on special education schools and expensive medical expenses.For hearing-impaired people,auxiliary equipment based on mobile devices is even less.In this paper,a specific speech recognition system was designed in combination with the characteristics of the hearers.The hearers realize the pronunciation by clicking the icon on the interface,the users imitate according to the sound information,and the system evaluates the results according to the detected data,so as to achieve the organic combination of communication and rehabilitation.On the basis of this system,in order to improve the efficiency of speech input,the text prediction of sem algorithm based on semantics was added.Based on the specific speech recognition,the overall architecture design was completed and the interaction between the training module and the speech module was realized.
作者 李建文 杨亚威 LI Jianwen;YANG Yawei(College of Electric & Information Engineering,Shanxi University of Science & Technology,Xi’an 710021,China)
出处 《河南科技学院学报(自然科学版)》 2019年第1期67-73,78,共8页 Journal of Henan Institute of Science and Technology(Natural Science Edition)
基金 国家自然科学基金(60672001)
关键词 语音识别 听障人沟通 文本预测 语音训练 speech recognition hearing impaired communication text forecast voice training
  • 相关文献

参考文献7

二级参考文献38

  • 1干敏梁,桑海潮.一种基于DSP的数字存储示波器[J].测控技术,2004,23(z1):339-340. 被引量:1
  • 2Chen Shaobing, Donoho D, Saunders M. Atomic decom-position by basis pursuit[J]. SIAM Rev, 2001, 43(1) 129-159. 被引量:1
  • 3Davenport M A, Duarte M F, Eldar Y C, et al. Introduc- tion to compressed sensing[ M ]. Cambridge: Cambridge University Press, 2011. 被引量:1
  • 4Wright J, Ma Yi, Mairal J, et al. Sparse representation for computer vision and pattern recognition[J]. Proceed- ings of IEEE, 2010: 1031-1040. 被引量:1
  • 5Tibshirani R. Regression shrinkage and selection via the Lasso[J]. Journal of the Royal Statistical Society Series B, 1996, 58(1): 267-288. 被引量:1
  • 6Chen Shaobing, Donoho D, Saunders M. Atomic decom- position by basis pursuit [ J]. SIAM Journal of Scientific Computing, 1999, 20( 1 ) : 33-61. 被引量:1
  • 7Jansen A, Niyogi P. Point Process Models for Spotting Keywords in Continuous Speech[ J ]. IEEE Transactions on Audio, Speech, and 'Language Processing. 2009, 17 (8) : 1457-1470. 被引量:1
  • 8Jansen A. Whole Word Discriminative Point Process Mod- els[ C ]. IEEE International Conference on Acoustics, Speech and Signal Processing, 2011:5180-5183. 被引量:1
  • 9Deng L. An Overview of Deep-Structured Learning for Infor- marion Processing: APSIPA ASC 2011[C]. Xi'an: 2011. 被引量:1
  • 10Mohamed A, Dahl G E, Hinton G. Acoustic Modeling Using Deep Belief Networks[ J ]. IEEE Transactions on Audio, Speech, and Language Processing. 2012, 20 (1): 14-22. 被引量:1

共引文献12

同被引文献14

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部