期刊文献+

基于本征音子说话人子空间的说话人自适应算法 被引量:4

Speaker Adaptation Method Based on Eigenphone Speaker Subspace for Speech Recognition
下载PDF
导出
摘要 本征音子说话人自适应算法在自适应数据量充足时可以取得很好的自适应效果,但在自适应数据量不足时会出现严重的过拟合现象。为此该文提出一种基于本征音子说话人子空间的说话人自适应算法来克服这一问题。首先给出基于隐马尔可夫模型-高斯混合模型(HMM-GMM)的语音识别系统中本征音子说话人自适应的基本原理。其次通过引入说话人子空间对不同说话人的本征音子矩阵间的相关性信息进行建模;然后通过估计说话人相关坐标矢量得到一种新的本征音子说话人子空间自适应算法。最后将本征音子说话人子空间自适应算法与传统说话人子空间自适应算法进行了对比。基于微软语料库的汉语连续语音识别实验表明,与本征音子说话人自适应算法相比,该算法在自适应数据量极少时能大幅提升性能,较好地克服过拟合现象。与本征音自适应算法相比,该算法以较小的性能牺牲代价获得了更低的空间复杂度而更具实用性。 The eigenphone speaker adaptation method performs well when the amount of adaptation data is sufficient. However, it suffers from severe over-fitting when insufficient amount of adaptation data is provided. A speaker adaptation method based on eigenphone speaker subspace is proposed to overcome this problem. Firstly, a brief overview of the eigenphone speaker adaptation method is presented in case of Hidden Markov Model-Gaussian Mixture Model (HMM-GMM) based speech recognition system. Secondly, speaker snbspace is introduced to model the inter-speaker correlation information among different speakers' eigenphones. Thirdly, a new speaker adaptation method based on eigenphone speaker subspace is derived from estimation of a speaker dependent coordinate vector for each speaker. Finally, a comparison between the new method and traditional speaker subspace based method is discussed in detail. Experimental results on a Mandarin Chinese continuous speech recognition task show that compared with original eigenphone speaker adaptation method, the performance of the eigenphone speaker subspace method can be improved significantly when insufficient amount of adaptation data is provided. Compared with eigenvoice method, eigenphone speaker subspace method can save a great amount of storage space only at the expense of minor performance degradation.
作者 屈丹 张文林
出处 《电子与信息学报》 EI CSCD 北大核心 2015年第6期1350-1356,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61175017 61302107和61403415)资助课题
关键词 语音信号处理 说话人自适应 本征音子 本征音子说话人子空间 低秩约束 本征音 Speech signal processing Speaker adaptation constraint Eigenvoice Eigenphone Eigenphones' speaker subspace Low-rank
  • 相关文献

参考文献16

  • 1Zhang Wen-lin,Zhang Wei-qiang,Li Bi-cheng,et al..Bayesian speaker adaptation based on a new hierarchical probabilistic model[J].IEEE Transactions on Audio,Speech and Language Processing,2012,20(7): 2002-2015. 被引量:1
  • 2Solomonoff A,Campbell W M,and Boardman I.Advances in channel compensation for SVM speaker recognition[C].Proceedings of International Conference on Acoustics,Speech,and Signal Processing (ICASSP),Philadelphia,United States,2005: 629-632. 被引量:1
  • 3Kumar D S P,Prasad N V,Joshi V,et al..Modified splice and its extension to non-stereo data for noise robust speech recognition[C].Proceedings of IEEE Automatic Speech Recognition and Understanding Workshop(ASRU),Olomouc,Czech Republic,2013: 174-179. 被引量:1
  • 4Ghalehjegh S H and Rose R C.Two-stage speaker adaptation in subspace Gaussian mixture models[C].Proceedings of International Conference on Audio,Speech and Signal Processing(ICASSP),Florence,Italy,2014: 6374-6378. 被引量:1
  • 5Wang Y Q and Gale M J F.Tandem system adaptation using multiple linear feature transforms[C].Proceedings of International Conference on Audio,Speech and Signal Processing(ICASSP),Vancouver,Canada,2013: 7932-7936. 被引量:1
  • 6Kenny P,Boulianne G,and Dumouchel P.Eigenvoice modeling with sparse training data[J].IEEE Transactions on Speech and Audio Processing,2005,13(3): 345-354. 被引量:1
  • 7Kenny P,Boulianne G,Dumouchel P,et al..Speaker adaptation using an eigenphone basis[J].IEEE Transaction on Speech and Audio Processing,2004,12(6): 579-589. 被引量:1
  • 8Zhang Wen-lin,Zhang Wei-qiang,and Li Bi-cheng.Speaker adaptation based on speaker-dependent eigenphone estimation[C].Proceedings of IEEE Automatic Speech Recognition and Understanding Workshop(ASRU),Hawaii,United States,2011: 48-52. 被引量:1
  • 9张文林,张连海,陈琦,李弼程.语音识别中基于低秩约束的本征音子说话人自适应方法[J].电子与信息学报,2014,36(4):981-987. 被引量:3
  • 10Zhang Wen-lin,Qu Dan,and Zhang Wei-qiang.Speaker adaptation based on sparse and low-rank eigenphone matrix estimation[C].Proceedings of Annual Conference on International Speech Communication Association (INTERSPEECH),Singapore,2014: 2972-2976. 被引量:1

二级参考文献1

共引文献2

同被引文献28

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部