摘要
我国核电行业呈现规模庞大、发展迅速的特点,核电机组的状态监测系统对具有自主知识产权的耐高温耐辐射压电加速度传感器具有迫切需求。该文针对核电环境检测加速度信号的特点,提出并设计了一种抗辐射的压缩式压电加速度传感器,同时,介绍了传感器的工作原理,推导了其数学模型,并采用ANSYS有限元仿真平台对传感器结构进行优化设计。通过仿真实验探明了传感器结构参数与传感器输出性能的关联关系,仿真结果表明,压电陶瓷厚为0.8mm、质量块厚为3.5mm、螺杆直径为?1.8mm、中心通孔直径为?2mm和陶瓷外径为?4.4mm时,传感器输出电压起伏最优为±0.85%,输出电压幅值高于11mV,传感器灵敏度高且结构应力强度较低,为我国核电行业发展高性能核电机组状态监测系统奠定了基础。
The nuclear power industry of China has the features of large scale and rapid development in recent years.The status monitoring system of nuclear power units has an urgent need for high temperature and radiation resistant piezoelectric accelerometers with independent intellectual property rights.According to the characteristics of acceleration signal in nuclear power environment,a compressive piezoelectric accelerometer with radiation resistance is proposed and designed in this paper.At the same time,the working principle of the sensor is introduced,its mathematical model is deduced,and the structure of the sensor is optimized by ANSYS finite element simulation platform.The relationship between the output performance and structure parameters of accelerometer sensor is investigated by the simulation experiment.The simulation results show that the optimal output voltage variation of accelerometer sensor is±0.85% and the amplitude of the output voltage is greater than 11 mV when the thickness of piezoelectric ceramics is 0.8mm,the thickness of mass block is 3.5mm,the diameter of screw is φ1.8mm,the diameter of central hole is ?2mm and the external diameter of ceramics is φ4.4mm.The accelerometer sensor has high sensitivity and low stress intensity,which lays the foundation for developing high performance status montoring systm of nuclear power units of China.
作者
袁宇鹏
王登攀
李小飞
李军
胡杨
曾翔豹
王音心
张祖伟
YUAN Yupeng;WANG Dengpan;LI Xiaofei;LI Jun;HU Yang;ZENG Xiangbao;WANG Yinxin;ZHANG Zuwei(Chongqing Acoustic-Optic-Electronic Co. Ltd, China Electronics Technology Group,Chongqing 401332,China;The 26th Institute of China Electronics Technology Group Corporation,Chongqing 400060,China)
出处
《压电与声光》
CAS
北大核心
2019年第1期49-52,共4页
Piezoelectrics & Acoustooptics
基金
国家重点研发计划基金资助项目(2017YFF0105400)