期刊文献+

一种基于等距度量学习策略的行人重识别改进算法 被引量:11

Improved Metric Learning Algorithm for Person Re-identification Based on Equidistance
下载PDF
导出
摘要 为了提高行人重识别距离度量MLAPG算法的鲁棒性,该文提出基于等距度量学习策略的行人重识别Equid-MLAPG算法。MLAPG算法中正负样本对在映射空间的分布不均衡导致间距超参数受负样本对距离影响更大,因此该文设计的Equid-MLAPG算法要求正样本对映射成为变换空间中的一个点,即正样本对在变换空间中距离为零,使算法收敛时正负样本对距离分布不存在交叉部分。实验表明Equid-MLAPG算法能在常用的行人重识别数据集上取得良好的实验效果,具有更好的识别率和广泛的适用性。 In order to improve the robustness of MLAPG algorithm,a person re-identification algorithm,called Equid-MLAPG algorithm is proposed,which is based on the equidistance measurement learning strategy.Due to the imbalanced distribution of positive and negative sample pairs in the mapping space,sample spacing hyper-parameter of MLAPG algorithm is more affected by the distance of negative sample pairs.Therefore,Equid-MLAPG algorithm tends to map the positive sample pair to be a point in the transform space.That is,the distance of a positive sample pair in the transform space is mapped to be zero,resulting in no intersection in the distribution of positive and negative sample pairs in the transform space when algorithm convergences.Experiments show that the Equid-MLAPG algorithm can achieve better experimental results on commonly used person re-identification datasets with better recognition rate and wide applicability.
作者 周智恒 刘楷怡 黄俊楚 陈增群 ZHOU Zhiheng;LIU Kaiyi;HUANG Junchu;CHEN Zengqun(School of Electronic and Information Engineering,South China University of Technology,Guangzhou 510000,China)
出处 《电子与信息学报》 EI CSCD 北大核心 2019年第2期477-483,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(U1401252 61871188) 国家重点研发计划(2018YFC0309400) 中央高校基本科研业务费专项资金(2017MS062) 广州市产学研协同创新重大专项(201604016133)~~
关键词 行人重识别 等距度量 MLAPG算法 Person re-identification Equidistance MLAPG algorithm
  • 相关文献

参考文献1

二级参考文献22

  • 1Gray D, Brennan S, and Tao H. Evaluating appearance models for recognition, reacquisition, and tracking[C]. IEEE International Workshop on Performance Evaluation for Tracking and Surveillance. Rio de Janeiro, Brazil, 2007: 41-47. 被引量:1
  • 2Wang H, Bao X, Choudhury R R, et al. Insight: recognizing humans without face recognition[C]. Proceedings of the 14th Workshop on Mobile Computing Systems and Applications, Georgia, USA, 2013, 7. 被引量:1
  • 3Farenzena M, Bazzani L, Perina A, et al. Person re-identification by symmetry-driven accumulation of local features[C]. IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 2360-2367. 被引量:1
  • 4Cheng D S, Cristani M, Stoppa M, et al. Custom pictorial structures for re-identification[C]. British Machine Vision Conference, Dundee, UK, 2011, 6. 被引量:1
  • 5Bazzani L, Cristani M, Perina A, et al. Multiple-shot person re-identification by chromatic and epitomic analyses[J]. Pattern Recognition Letters, 2012, 33(7): 898-903. 被引量:1
  • 6Ma B, Su Y, and Jurie F. Local descriptors encoded by fisher vectors for person re-identification[C]. European Conference on Computer Vision, Florence, Italy, 2012: 413-422. 被引量:1
  • 7Hu Y, Liao S, Lei Z, et al. Exploring structural information and fusing multiple features for person re-identification[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 794-799. 被引量:1
  • 8Bak S, Corvee E, Bremond F, et al. Person re-identification using spatial covariance regions of human body parts[C]. IEEE International Conference on Advanced Video and Signal Based Surveillance, Boston, USA, 2010: 435-440. 被引量:1
  • 9Bak S, Corvee E, Bremond F, et al. Multiple-shot human re-identification by mean riemannian covariance grid[C]. IEEE International Conference on Advanced Video and Signal-Based Surveillance, Klagenfurt, Austria, 2011: 179-184. 被引量:1
  • 10Zhao R, Ouyang W, and Wang X. Unsupervised salience learning for person re-identification[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 4321-4328. 被引量:1

共引文献20

同被引文献46

引证文献11

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部